Details
Original language | English |
---|---|
Article number | 165 |
Journal | MOLECULES |
Volume | 25 |
Issue number | 1 |
Publication status | Published - 31 Dec 2019 |
Abstract
Polysialic acid (polySia) is a linear homopolymer of varying chain lengths that exists mostly on the outer cell membrane surface of certain bacteria, such as Escherichia coli (E. coli) K1. PolySia, with an average degree of polymerization of 20 (polySia avDP20), possesses material properties that can be used for therapeutic applications to treat inflammatory neurodegenerative diseases. The fermentation of E. coli K1 enables the large-scale production of endogenous long-chain polySia (DP ≈ 130) (LC polySia), from which polySia avDP20 can be manufactured using thermal hydrolysis. To ensure adequate biopharmaceutical quality of the product, the removal of byproducts and contaminants, such as endotoxins, is essential. Recent studies have revealed that the long-term incubation in alkaline sodium hydroxide (NaOH) solutions reduces the endotoxin content down to 3 EU (endotoxin units) per mg, which is in the range of pharmaceutical applications. In this study, we analyzed interferences in the intramolecular structure of polySia caused by harsh NaOH treatment or thermal hydrolysis. Nuclear magnetic resonance (NMR) spectroscopy revealed that neither the incubation in an alkaline solution nor the thermal hydrolysis induced any chemical modification. In addition, HPLC analysis with a preceding 1,2-diamino-4,5-methylenedioxybenzene (DMB) derivatization demonstrated that the alkaline treatment did not induce any hydrolytic effects to reduce the maximum polymer length and that the controlled thermal hydrolysis reduced the maximum chain length effectively, while costeffective incubation in alkaline solutions had no adverse effects on LC polySia. Therefore, both methods guarantee the production of high-purity, low-molecular-weight polySia without alterations in the structure, which is a prerequisite for the submission of a marketing authorization application as a medicinal product. However, a specific synthesis of low-molecular-weight polySia with defined chain lengths is only possible to a limited extent.
Keywords
- Endotoxin removal, Hydrolysis, NMR spectroscopy, Polysialic acid, Structure integrity
ASJC Scopus subject areas
- Chemistry(all)
- Analytical Chemistry
- Chemistry(all)
- Chemistry (miscellaneous)
- Biochemistry, Genetics and Molecular Biology(all)
- Molecular Medicine
- Pharmacology, Toxicology and Pharmaceutics(all)
- Pharmaceutical Science
- Pharmacology, Toxicology and Pharmaceutics(all)
- Drug Discovery
- Chemistry(all)
- Physical and Theoretical Chemistry
- Chemistry(all)
- Organic Chemistry
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: MOLECULES, Vol. 25, No. 1, 165, 31.12.2019.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Determination of the Structural Integrity and Stability of Polysialic Acid during Alkaline and Thermal Treatment
AU - Bartling, Bastian
AU - Rehfeld, Johanna S.
AU - Boßmann, Daniel
AU - De Vries, Ingo
AU - Fohrer, Jörg
AU - Lammers, Frank
AU - Scheper, Thomas
AU - Beutel, Sascha
N1 - Funding Information: This work was financially supported by the German Research Foundation (DFG, grant number: DFGSCHE279/35-1), as well as the German Federal Ministry of Education and Research (BMBF, grant numbers: BMBF-03VP00271 and BMBF-03VP00273)
PY - 2019/12/31
Y1 - 2019/12/31
N2 - Polysialic acid (polySia) is a linear homopolymer of varying chain lengths that exists mostly on the outer cell membrane surface of certain bacteria, such as Escherichia coli (E. coli) K1. PolySia, with an average degree of polymerization of 20 (polySia avDP20), possesses material properties that can be used for therapeutic applications to treat inflammatory neurodegenerative diseases. The fermentation of E. coli K1 enables the large-scale production of endogenous long-chain polySia (DP ≈ 130) (LC polySia), from which polySia avDP20 can be manufactured using thermal hydrolysis. To ensure adequate biopharmaceutical quality of the product, the removal of byproducts and contaminants, such as endotoxins, is essential. Recent studies have revealed that the long-term incubation in alkaline sodium hydroxide (NaOH) solutions reduces the endotoxin content down to 3 EU (endotoxin units) per mg, which is in the range of pharmaceutical applications. In this study, we analyzed interferences in the intramolecular structure of polySia caused by harsh NaOH treatment or thermal hydrolysis. Nuclear magnetic resonance (NMR) spectroscopy revealed that neither the incubation in an alkaline solution nor the thermal hydrolysis induced any chemical modification. In addition, HPLC analysis with a preceding 1,2-diamino-4,5-methylenedioxybenzene (DMB) derivatization demonstrated that the alkaline treatment did not induce any hydrolytic effects to reduce the maximum polymer length and that the controlled thermal hydrolysis reduced the maximum chain length effectively, while costeffective incubation in alkaline solutions had no adverse effects on LC polySia. Therefore, both methods guarantee the production of high-purity, low-molecular-weight polySia without alterations in the structure, which is a prerequisite for the submission of a marketing authorization application as a medicinal product. However, a specific synthesis of low-molecular-weight polySia with defined chain lengths is only possible to a limited extent.
AB - Polysialic acid (polySia) is a linear homopolymer of varying chain lengths that exists mostly on the outer cell membrane surface of certain bacteria, such as Escherichia coli (E. coli) K1. PolySia, with an average degree of polymerization of 20 (polySia avDP20), possesses material properties that can be used for therapeutic applications to treat inflammatory neurodegenerative diseases. The fermentation of E. coli K1 enables the large-scale production of endogenous long-chain polySia (DP ≈ 130) (LC polySia), from which polySia avDP20 can be manufactured using thermal hydrolysis. To ensure adequate biopharmaceutical quality of the product, the removal of byproducts and contaminants, such as endotoxins, is essential. Recent studies have revealed that the long-term incubation in alkaline sodium hydroxide (NaOH) solutions reduces the endotoxin content down to 3 EU (endotoxin units) per mg, which is in the range of pharmaceutical applications. In this study, we analyzed interferences in the intramolecular structure of polySia caused by harsh NaOH treatment or thermal hydrolysis. Nuclear magnetic resonance (NMR) spectroscopy revealed that neither the incubation in an alkaline solution nor the thermal hydrolysis induced any chemical modification. In addition, HPLC analysis with a preceding 1,2-diamino-4,5-methylenedioxybenzene (DMB) derivatization demonstrated that the alkaline treatment did not induce any hydrolytic effects to reduce the maximum polymer length and that the controlled thermal hydrolysis reduced the maximum chain length effectively, while costeffective incubation in alkaline solutions had no adverse effects on LC polySia. Therefore, both methods guarantee the production of high-purity, low-molecular-weight polySia without alterations in the structure, which is a prerequisite for the submission of a marketing authorization application as a medicinal product. However, a specific synthesis of low-molecular-weight polySia with defined chain lengths is only possible to a limited extent.
KW - Endotoxin removal
KW - Hydrolysis
KW - NMR spectroscopy
KW - Polysialic acid
KW - Structure integrity
UR - http://www.scopus.com/inward/record.url?scp=85077583246&partnerID=8YFLogxK
U2 - 10.3390/molecules25010165
DO - 10.3390/molecules25010165
M3 - Article
C2 - 31906121
AN - SCOPUS:85077583246
VL - 25
JO - MOLECULES
JF - MOLECULES
SN - 1420-3049
IS - 1
M1 - 165
ER -