Determinants of classical SG-pseudodifferential operators

Research output: Contribution to journalArticleResearchpeer review

Authors

  • L. Maniccia
  • E. Schrohe
  • J. Seiler

Research Organisations

External Research Organisations

  • University of Turin
View graph of relations

Details

Original languageEnglish
Pages (from-to)782-802
Number of pages21
JournalMathematische Nachrichten
Volume287
Issue number7
Publication statusPublished - 31 Oct 2013

Abstract

We introduce a generalized trace functional TR in the spirit of Kontsevich and Vishik's canonical trace for classical SG-pseudodifferential operators on Rn and suitable manifolds, using a finite-part integral regularization technique. This allows us to define a zeta-regularized determinant detA for parameter-elliptic operators A∈S cl μ,m, μ>0, m≥0. For m=0, the asymptotics of TRe-tA as t→0 and of TR(λ-A)-k as |λ|→∞ are derived. For suitable pairs (A,A0) we show that detA/detA0 coincides with the so-called relative determinant det(A,A0).

Keywords

    Kontsevich-Vishik trace, Pseudodifferential operators, Regularized determinant

ASJC Scopus subject areas

Cite this

Determinants of classical SG-pseudodifferential operators. / Maniccia, L.; Schrohe, E.; Seiler, J.
In: Mathematische Nachrichten, Vol. 287, No. 7, 31.10.2013, p. 782-802.

Research output: Contribution to journalArticleResearchpeer review

Maniccia L, Schrohe E, Seiler J. Determinants of classical SG-pseudodifferential operators. Mathematische Nachrichten. 2013 Oct 31;287(7):782-802. doi: 10.1002/mana.201300040
Maniccia, L. ; Schrohe, E. ; Seiler, J. / Determinants of classical SG-pseudodifferential operators. In: Mathematische Nachrichten. 2013 ; Vol. 287, No. 7. pp. 782-802.
Download
@article{c067fb607dbb4dfc83e47abf9176cc1f,
title = "Determinants of classical SG-pseudodifferential operators",
abstract = "We introduce a generalized trace functional TR in the spirit of Kontsevich and Vishik's canonical trace for classical SG-pseudodifferential operators on Rn and suitable manifolds, using a finite-part integral regularization technique. This allows us to define a zeta-regularized determinant detA for parameter-elliptic operators A∈S cl μ,m, μ>0, m≥0. For m=0, the asymptotics of TRe-tA as t→0 and of TR(λ-A)-k as |λ|→∞ are derived. For suitable pairs (A,A0) we show that detA/detA0 coincides with the so-called relative determinant det(A,A0).",
keywords = "Kontsevich-Vishik trace, Pseudodifferential operators, Regularized determinant",
author = "L. Maniccia and E. Schrohe and J. Seiler",
note = "Copyright: Copyright 2014 Elsevier B.V., All rights reserved.",
year = "2013",
month = oct,
day = "31",
doi = "10.1002/mana.201300040",
language = "English",
volume = "287",
pages = "782--802",
journal = "Mathematische Nachrichten",
issn = "0025-584X",
publisher = "Wiley-VCH Verlag",
number = "7",

}

Download

TY - JOUR

T1 - Determinants of classical SG-pseudodifferential operators

AU - Maniccia, L.

AU - Schrohe, E.

AU - Seiler, J.

N1 - Copyright: Copyright 2014 Elsevier B.V., All rights reserved.

PY - 2013/10/31

Y1 - 2013/10/31

N2 - We introduce a generalized trace functional TR in the spirit of Kontsevich and Vishik's canonical trace for classical SG-pseudodifferential operators on Rn and suitable manifolds, using a finite-part integral regularization technique. This allows us to define a zeta-regularized determinant detA for parameter-elliptic operators A∈S cl μ,m, μ>0, m≥0. For m=0, the asymptotics of TRe-tA as t→0 and of TR(λ-A)-k as |λ|→∞ are derived. For suitable pairs (A,A0) we show that detA/detA0 coincides with the so-called relative determinant det(A,A0).

AB - We introduce a generalized trace functional TR in the spirit of Kontsevich and Vishik's canonical trace for classical SG-pseudodifferential operators on Rn and suitable manifolds, using a finite-part integral regularization technique. This allows us to define a zeta-regularized determinant detA for parameter-elliptic operators A∈S cl μ,m, μ>0, m≥0. For m=0, the asymptotics of TRe-tA as t→0 and of TR(λ-A)-k as |λ|→∞ are derived. For suitable pairs (A,A0) we show that detA/detA0 coincides with the so-called relative determinant det(A,A0).

KW - Kontsevich-Vishik trace

KW - Pseudodifferential operators

KW - Regularized determinant

UR - http://www.scopus.com/inward/record.url?scp=84899946667&partnerID=8YFLogxK

U2 - 10.1002/mana.201300040

DO - 10.1002/mana.201300040

M3 - Article

AN - SCOPUS:84899946667

VL - 287

SP - 782

EP - 802

JO - Mathematische Nachrichten

JF - Mathematische Nachrichten

SN - 0025-584X

IS - 7

ER -