Details
Original language | English |
---|---|
Pages (from-to) | 191-214 |
Number of pages | 24 |
Journal | Communications in Mathematical Physics |
Volume | 174 |
Issue number | 1 |
Publication status | Published - 1 Nov 1995 |
Abstract
We consider zero temperature correlation functions of the spin-1/2 XXZ Heisenberg chain in the critical regime -1<Δ≦1 in a magnetic field. Starting from the algebraic Bethe Ansatz we derive representations for various correlation functions in term of determinats of Fredholm integral operators.
ASJC Scopus subject areas
- Physics and Astronomy(all)
- Statistical and Nonlinear Physics
- Mathematics(all)
- Mathematical Physics
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Communications in Mathematical Physics, Vol. 174, No. 1, 01.11.1995, p. 191-214.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Determinant representation for correlation functions of spin-1/2 XXX and XXZ Heisenberg magnets
AU - Eßler, Fabian H.L.
AU - Frahm, Holger
AU - Izergin, Anatoli G.
AU - Korepin, Vladimir E.
PY - 1995/11/1
Y1 - 1995/11/1
N2 - We consider zero temperature correlation functions of the spin-1/2 XXZ Heisenberg chain in the critical regime -1<Δ≦1 in a magnetic field. Starting from the algebraic Bethe Ansatz we derive representations for various correlation functions in term of determinats of Fredholm integral operators.
AB - We consider zero temperature correlation functions of the spin-1/2 XXZ Heisenberg chain in the critical regime -1<Δ≦1 in a magnetic field. Starting from the algebraic Bethe Ansatz we derive representations for various correlation functions in term of determinats of Fredholm integral operators.
U2 - 10.1007/BF02099470
DO - 10.1007/BF02099470
M3 - Article
AN - SCOPUS:0000731734
VL - 174
SP - 191
EP - 214
JO - Communications in Mathematical Physics
JF - Communications in Mathematical Physics
SN - 0010-3616
IS - 1
ER -