Detection of small molecules using aptamers

Research output: ThesisDoctoral thesis

Authors

  • Harshvardhan Modh

Research Organisations

View graph of relations

Details

Original languageEnglish
QualificationDoctor rerum naturalium
Awarding Institution
Supervised by
Date of Award19 Sept 2018
Place of PublicationHannover
Publication statusPublished - 2019

Abstract

Nucleic acid aptamers are versatile molecular recognition agents that bind to their targets with high affinity and selectivity. They can be selected by an in vitro procedure against a broad range of targets molecules including small molecules (molecular weight <1000 g/mol). Small molecules include toxins, antibiotics, molecular markers, drugs, and heavy metals ions. The detection of small molecules is important in different areas including public health, environmental monitoring, food safety, and antiterrorism. To meet the increasing demand for small molecule detection, methods are needed that are sensitive, reliable, rapid, cost effective and simple to use. In this context, aptamer-based detection platforms are becoming a promising alternative to conventional methods for small molecule detection. Concerning signal generation, mass-dependent detection methods, sandwich assay format and single-site binding assay formats are not always suitable for small molecule detection. The structural flexibility of aptamers enables the development of unique aptamer-based sensing platforms because aptamers fold into a well-defined three-dimensional structure upon binding to their target molecules. This specific property of aptamers allows to develop target-Induced dissociation (TID) of complementary oligonucleotide and target-induced structure switching (TISS)-based assays. In this PhD work, a novel aptamer-based assay (Apta-qPCR) was developed, which relies on TID for the detection of small molecules originating from biological, food and environmental samples. The Apta-qPCR assay was developed and optimized for the detection of ATP, ochratoxin A, and oxytetracycline. The assays are highly sensitive and selective for the target molecules. In addition, a rapid colorimetric assay was developed based on the TISS principle, which can detect ATP and ochratoxin A in 15 minutes.

Sustainable Development Goals

Cite this

Detection of small molecules using aptamers. / Modh, Harshvardhan.
Hannover, 2019. 128 p.

Research output: ThesisDoctoral thesis

Modh, H 2019, 'Detection of small molecules using aptamers', Doctor rerum naturalium, Leibniz University Hannover, Hannover. https://doi.org/10.15488/4828
Modh, H. (2019). Detection of small molecules using aptamers. [Doctoral thesis, Leibniz University Hannover]. https://doi.org/10.15488/4828
Modh H. Detection of small molecules using aptamers. Hannover, 2019. 128 p. doi: 10.15488/4828
Modh, Harshvardhan. / Detection of small molecules using aptamers. Hannover, 2019. 128 p.
Download
@phdthesis{55f532dd62204cfba8085ec80e1980fa,
title = "Detection of small molecules using aptamers",
abstract = "Nucleic acid aptamers are versatile molecular recognition agents that bind to their targets with high affinity and selectivity. They can be selected by an in vitro procedure against a broad range of targets molecules including small molecules (molecular weight <1000 g/mol). Small molecules include toxins, antibiotics, molecular markers, drugs, and heavy metals ions. The detection of small molecules is important in different areas including public health, environmental monitoring, food safety, and antiterrorism. To meet the increasing demand for small molecule detection, methods are needed that are sensitive, reliable, rapid, cost effective and simple to use. In this context, aptamer-based detection platforms are becoming a promising alternative to conventional methods for small molecule detection. Concerning signal generation, mass-dependent detection methods, sandwich assay format and single-site binding assay formats are not always suitable for small molecule detection. The structural flexibility of aptamers enables the development of unique aptamer-based sensing platforms because aptamers fold into a well-defined three-dimensional structure upon binding to their target molecules. This specific property of aptamers allows to develop target-Induced dissociation (TID) of complementary oligonucleotide and target-induced structure switching (TISS)-based assays. In this PhD work, a novel aptamer-based assay (Apta-qPCR) was developed, which relies on TID for the detection of small molecules originating from biological, food and environmental samples. The Apta-qPCR assay was developed and optimized for the detection of ATP, ochratoxin A, and oxytetracycline. The assays are highly sensitive and selective for the target molecules. In addition, a rapid colorimetric assay was developed based on the TISS principle, which can detect ATP and ochratoxin A in 15 minutes.",
author = "Harshvardhan Modh",
year = "2019",
doi = "10.15488/4828",
language = "English",
school = "Leibniz University Hannover",

}

Download

TY - BOOK

T1 - Detection of small molecules using aptamers

AU - Modh, Harshvardhan

PY - 2019

Y1 - 2019

N2 - Nucleic acid aptamers are versatile molecular recognition agents that bind to their targets with high affinity and selectivity. They can be selected by an in vitro procedure against a broad range of targets molecules including small molecules (molecular weight <1000 g/mol). Small molecules include toxins, antibiotics, molecular markers, drugs, and heavy metals ions. The detection of small molecules is important in different areas including public health, environmental monitoring, food safety, and antiterrorism. To meet the increasing demand for small molecule detection, methods are needed that are sensitive, reliable, rapid, cost effective and simple to use. In this context, aptamer-based detection platforms are becoming a promising alternative to conventional methods for small molecule detection. Concerning signal generation, mass-dependent detection methods, sandwich assay format and single-site binding assay formats are not always suitable for small molecule detection. The structural flexibility of aptamers enables the development of unique aptamer-based sensing platforms because aptamers fold into a well-defined three-dimensional structure upon binding to their target molecules. This specific property of aptamers allows to develop target-Induced dissociation (TID) of complementary oligonucleotide and target-induced structure switching (TISS)-based assays. In this PhD work, a novel aptamer-based assay (Apta-qPCR) was developed, which relies on TID for the detection of small molecules originating from biological, food and environmental samples. The Apta-qPCR assay was developed and optimized for the detection of ATP, ochratoxin A, and oxytetracycline. The assays are highly sensitive and selective for the target molecules. In addition, a rapid colorimetric assay was developed based on the TISS principle, which can detect ATP and ochratoxin A in 15 minutes.

AB - Nucleic acid aptamers are versatile molecular recognition agents that bind to their targets with high affinity and selectivity. They can be selected by an in vitro procedure against a broad range of targets molecules including small molecules (molecular weight <1000 g/mol). Small molecules include toxins, antibiotics, molecular markers, drugs, and heavy metals ions. The detection of small molecules is important in different areas including public health, environmental monitoring, food safety, and antiterrorism. To meet the increasing demand for small molecule detection, methods are needed that are sensitive, reliable, rapid, cost effective and simple to use. In this context, aptamer-based detection platforms are becoming a promising alternative to conventional methods for small molecule detection. Concerning signal generation, mass-dependent detection methods, sandwich assay format and single-site binding assay formats are not always suitable for small molecule detection. The structural flexibility of aptamers enables the development of unique aptamer-based sensing platforms because aptamers fold into a well-defined three-dimensional structure upon binding to their target molecules. This specific property of aptamers allows to develop target-Induced dissociation (TID) of complementary oligonucleotide and target-induced structure switching (TISS)-based assays. In this PhD work, a novel aptamer-based assay (Apta-qPCR) was developed, which relies on TID for the detection of small molecules originating from biological, food and environmental samples. The Apta-qPCR assay was developed and optimized for the detection of ATP, ochratoxin A, and oxytetracycline. The assays are highly sensitive and selective for the target molecules. In addition, a rapid colorimetric assay was developed based on the TISS principle, which can detect ATP and ochratoxin A in 15 minutes.

U2 - 10.15488/4828

DO - 10.15488/4828

M3 - Doctoral thesis

CY - Hannover

ER -

By the same author(s)