Details
Original language | English |
---|---|
Pages (from-to) | 97-100 |
Number of pages | 4 |
Journal | Procedia CIRP |
Volume | 111 |
Early online date | 6 Sept 2022 |
Publication status | Published - 2022 |
Event | 12th CIRP Conference on Photonic Technologies, LANE 2022 - Erlangen, Germany Duration: 4 Sept 2022 → 8 Sept 2022 |
Abstract
Additive manufacturing enables the production of intricate geometries including internal structures. This design freedom can be used advantageously to enhance heat transfer in injection molds by means of conformal cooling. The main goal is to reduce cycle times and to improve part quality through uniform cooling of the plastic products. This paper presents cooling design concepts for mold inserts. Their underlying approaches differ with respect to the shape and the cross-sectional geometries of cooling channels. Distinct inserts are additively manufactured by laser-based powder bed fusion (PBF-LB) of AISI 420 stainless steel. Experiments are carried out on a custom thermal test bench. Infrared thermography is used to examine the surface temperature, showing a reduction in cooling time by up to 41 % compared to conventional concepts. Additionally, the coolant flow is measured. The evaluation of the cooling characteristics reveal a critical trade-off between cycle time and uniformity of the surface temperature.
Keywords
- Additive Manufacturing, Conformal Cooling, Injection Molding, Laser-Based Powder Bed Fusion, Rapid Tooling
ASJC Scopus subject areas
- Engineering(all)
- Control and Systems Engineering
- Engineering(all)
- Industrial and Manufacturing Engineering
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Procedia CIRP, Vol. 111, 2022, p. 97-100.
Research output: Contribution to journal › Conference article › Research › peer review
}
TY - JOUR
T1 - Design of additively manufacturable injection molds with conformal cooling
AU - Wahl, Jan Philipp
AU - Niedermeyer, Jens
AU - Bernhard, Robert
AU - Hermsdorf, Jörg
AU - Kaierle, Stefan
PY - 2022
Y1 - 2022
N2 - Additive manufacturing enables the production of intricate geometries including internal structures. This design freedom can be used advantageously to enhance heat transfer in injection molds by means of conformal cooling. The main goal is to reduce cycle times and to improve part quality through uniform cooling of the plastic products. This paper presents cooling design concepts for mold inserts. Their underlying approaches differ with respect to the shape and the cross-sectional geometries of cooling channels. Distinct inserts are additively manufactured by laser-based powder bed fusion (PBF-LB) of AISI 420 stainless steel. Experiments are carried out on a custom thermal test bench. Infrared thermography is used to examine the surface temperature, showing a reduction in cooling time by up to 41 % compared to conventional concepts. Additionally, the coolant flow is measured. The evaluation of the cooling characteristics reveal a critical trade-off between cycle time and uniformity of the surface temperature.
AB - Additive manufacturing enables the production of intricate geometries including internal structures. This design freedom can be used advantageously to enhance heat transfer in injection molds by means of conformal cooling. The main goal is to reduce cycle times and to improve part quality through uniform cooling of the plastic products. This paper presents cooling design concepts for mold inserts. Their underlying approaches differ with respect to the shape and the cross-sectional geometries of cooling channels. Distinct inserts are additively manufactured by laser-based powder bed fusion (PBF-LB) of AISI 420 stainless steel. Experiments are carried out on a custom thermal test bench. Infrared thermography is used to examine the surface temperature, showing a reduction in cooling time by up to 41 % compared to conventional concepts. Additionally, the coolant flow is measured. The evaluation of the cooling characteristics reveal a critical trade-off between cycle time and uniformity of the surface temperature.
KW - Additive Manufacturing
KW - Conformal Cooling
KW - Injection Molding
KW - Laser-Based Powder Bed Fusion
KW - Rapid Tooling
UR - http://www.scopus.com/inward/record.url?scp=85140598045&partnerID=8YFLogxK
U2 - 10.1016/j.procir.2022.08.146
DO - 10.1016/j.procir.2022.08.146
M3 - Conference article
AN - SCOPUS:85140598045
VL - 111
SP - 97
EP - 100
JO - Procedia CIRP
JF - Procedia CIRP
SN - 2212-8271
T2 - 12th CIRP Conference on Photonic Technologies, LANE 2022
Y2 - 4 September 2022 through 8 September 2022
ER -