Details
Original language | English |
---|---|
Article number | 104742 |
Journal | Microprocessors and Microsystems |
Volume | 97 |
Early online date | 23 Dec 2022 |
Publication status | Published - Mar 2023 |
Abstract
Modern complex drilling systems contain communication nodes like sensors, actuators, and controllers, spread along the lower end of a drill string. Here, temperatures of more than 150 °C and pressure levels up to 200 MPa are present. These environmental conditions and mechanical shocks, are extremely challenging for the reliable use of electronic components. A powerline communication system is designed and evaluated to establish a robust communication channel with low amounts of wiring. This system can operate on highly distorted physical transmission channels by adding redundancy at the sender that can then be used to correct errors at the receiver. In order to synchronize the real-time clocks among different powerline stations, a new preamble extension approach that enables precise time synchronization between multiple bus nodes is added. After design and verification, this system was manufactured in XFAB 180 nm Silicon-On-Insulator (SOI) technology allowing operating temperatures of up to 175 °C. The die size is 5.25 mm × 5.25 mm and contains a complete HomePlug 1.0 communication stack with an environment for boot, interfacing, and debugging. Its data rate reaches 6.1 Mbit/s using the fastest transmission mode and the theoretical maximum of 0.55 Mbit/s in the robust OFDM (ROBO) mode, which is of particular interest for harsh environment applications. After verifying the fabricated die, a Printed Circuit Board (PCB) for climate chamber evaluation was designed and fitted. Measurements in this chamber carried out a maximum ambient temperature of 190 °C for communication with a minimum self-heating of the die of 20 °C measured at room temperature. In combination, this is 35 °C above the specification of the technology process. The timing synchronization evaluation showed a precision of 55.6 ns over the temperature range from -30 °C to 185 °C, which is as low as 1.5 clock cycles. Power measurements of up to 190 °C have shown an average power consumption increase of only 63μW/K below 150 °C and a maximum increase of 394μW/K above 150 °C. To the best of the authors’ knowledge, this is the first high-temperature evaluation of a powerline communication ASIC, which is particularly designed for a drilling system's harsh environment.
Keywords
- ASIC, Harsh environment, Powerline, SOC, Time synchronization
ASJC Scopus subject areas
- Computer Science(all)
- Software
- Computer Science(all)
- Hardware and Architecture
- Computer Science(all)
- Computer Networks and Communications
- Computer Science(all)
- Artificial Intelligence
Sustainable Development Goals
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Microprocessors and Microsystems, Vol. 97, 104742, 03.2023.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Design and Evaluation of a 180 nm Powerline Communication ASIC for Harsh Environment
AU - Stuckenberg, Tobias
AU - Rücker, Malte
AU - Gottschlich, Michel
AU - Rother, Niklas
AU - Nowosielski, Rochus
AU - Wiese, Frank
AU - Blume, Holger
PY - 2023/3
Y1 - 2023/3
N2 - Modern complex drilling systems contain communication nodes like sensors, actuators, and controllers, spread along the lower end of a drill string. Here, temperatures of more than 150 °C and pressure levels up to 200 MPa are present. These environmental conditions and mechanical shocks, are extremely challenging for the reliable use of electronic components. A powerline communication system is designed and evaluated to establish a robust communication channel with low amounts of wiring. This system can operate on highly distorted physical transmission channels by adding redundancy at the sender that can then be used to correct errors at the receiver. In order to synchronize the real-time clocks among different powerline stations, a new preamble extension approach that enables precise time synchronization between multiple bus nodes is added. After design and verification, this system was manufactured in XFAB 180 nm Silicon-On-Insulator (SOI) technology allowing operating temperatures of up to 175 °C. The die size is 5.25 mm × 5.25 mm and contains a complete HomePlug 1.0 communication stack with an environment for boot, interfacing, and debugging. Its data rate reaches 6.1 Mbit/s using the fastest transmission mode and the theoretical maximum of 0.55 Mbit/s in the robust OFDM (ROBO) mode, which is of particular interest for harsh environment applications. After verifying the fabricated die, a Printed Circuit Board (PCB) for climate chamber evaluation was designed and fitted. Measurements in this chamber carried out a maximum ambient temperature of 190 °C for communication with a minimum self-heating of the die of 20 °C measured at room temperature. In combination, this is 35 °C above the specification of the technology process. The timing synchronization evaluation showed a precision of 55.6 ns over the temperature range from -30 °C to 185 °C, which is as low as 1.5 clock cycles. Power measurements of up to 190 °C have shown an average power consumption increase of only 63μW/K below 150 °C and a maximum increase of 394μW/K above 150 °C. To the best of the authors’ knowledge, this is the first high-temperature evaluation of a powerline communication ASIC, which is particularly designed for a drilling system's harsh environment.
AB - Modern complex drilling systems contain communication nodes like sensors, actuators, and controllers, spread along the lower end of a drill string. Here, temperatures of more than 150 °C and pressure levels up to 200 MPa are present. These environmental conditions and mechanical shocks, are extremely challenging for the reliable use of electronic components. A powerline communication system is designed and evaluated to establish a robust communication channel with low amounts of wiring. This system can operate on highly distorted physical transmission channels by adding redundancy at the sender that can then be used to correct errors at the receiver. In order to synchronize the real-time clocks among different powerline stations, a new preamble extension approach that enables precise time synchronization between multiple bus nodes is added. After design and verification, this system was manufactured in XFAB 180 nm Silicon-On-Insulator (SOI) technology allowing operating temperatures of up to 175 °C. The die size is 5.25 mm × 5.25 mm and contains a complete HomePlug 1.0 communication stack with an environment for boot, interfacing, and debugging. Its data rate reaches 6.1 Mbit/s using the fastest transmission mode and the theoretical maximum of 0.55 Mbit/s in the robust OFDM (ROBO) mode, which is of particular interest for harsh environment applications. After verifying the fabricated die, a Printed Circuit Board (PCB) for climate chamber evaluation was designed and fitted. Measurements in this chamber carried out a maximum ambient temperature of 190 °C for communication with a minimum self-heating of the die of 20 °C measured at room temperature. In combination, this is 35 °C above the specification of the technology process. The timing synchronization evaluation showed a precision of 55.6 ns over the temperature range from -30 °C to 185 °C, which is as low as 1.5 clock cycles. Power measurements of up to 190 °C have shown an average power consumption increase of only 63μW/K below 150 °C and a maximum increase of 394μW/K above 150 °C. To the best of the authors’ knowledge, this is the first high-temperature evaluation of a powerline communication ASIC, which is particularly designed for a drilling system's harsh environment.
KW - ASIC
KW - Harsh environment
KW - Powerline
KW - SOC
KW - Time synchronization
UR - http://www.scopus.com/inward/record.url?scp=85145774787&partnerID=8YFLogxK
U2 - 10.15488/13285
DO - 10.15488/13285
M3 - Article
VL - 97
JO - Microprocessors and Microsystems
JF - Microprocessors and Microsystems
SN - 0141-9331
M1 - 104742
ER -