Details
Original language | English |
---|---|
Article number | e2022JB025148 |
Journal | Journal of Geophysical Research: Solid Earth |
Volume | 127 |
Issue number | 12 |
Early online date | 24 Nov 2022 |
Publication status | Published - 1 Dec 2022 |
Abstract
We use interferometric synthetic aperture radar observations to investigate the fault geometry and afterslip evolution within 3 years after a mainshock. The postseismic observations favor a ramp-flat structure in which the flat angle should be lower than 10°. The postseismic deformation is dominated by afterslip, while the viscoelastic response is negligible. A multisegment, stress-driven afterslip model (hereafter called the SA-2 model) with depth-varying frictional properties better explains the spatiotemporal evolution of the postseismic deformation than a two-segment, stress-driven afterslip model (hereafter called the SA-1 model). Although the SA-2 model does not improve the misfit significantly, this multisegment fault with depth-varying friction is more physically plausible given the depth-varying mechanical stratigraphy in the region. Compared to the kinematic afterslip model, the mechanical afterslip models with friction variation tend to underestimate early postseismic deformation to the west, which may indicate more complex fault friction than we expected. Both the kinematic and stress-driven models can resolve downdip afterslip, although it could be affected by data noise and model resolution. The transition depth of the sedimentary cover basement interface inferred by afterslip models is ∼12 km in the seismogenic zone, which coincides with the regional stratigraphic profile. Because the coseismic rupture propagated along a basement-involved fault while the postseismic slip may activate the frontal structures and/or shallower detachments in the sedimentary cover, the 2017 Sarpol-e Zahab earthquake may have acted as a typical event that contributed to both thick- and thin-skinned shortening of the Zagros in both seismic and aseismic ways.
ASJC Scopus subject areas
- Earth and Planetary Sciences(all)
- Geophysics
- Earth and Planetary Sciences(all)
- Geochemistry and Petrology
- Earth and Planetary Sciences(all)
- Earth and Planetary Sciences (miscellaneous)
- Earth and Planetary Sciences(all)
- Space and Planetary Science
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Journal of Geophysical Research: Solid Earth, Vol. 127, No. 12, e2022JB025148, 01.12.2022.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Depth-Varying Friction on a Ramp-Flat Fault Illuminated by ∼3-Year InSAR Observations Following the 2017 Mw 7.3 Sarpol-e Zahab Earthquake
AU - Guo, Zelong
AU - Motagh, Mahdi
AU - Hu, Jyr Ching
AU - Xu, Guangyu
AU - Haghighi, Mahmud Haghshenas
AU - Bahroudi, Abbas
AU - Fathian, Aram
AU - Li, Shaoyang
N1 - Funding Information: Zelong Guo gratefully acknowledge the scholarship supported him by China Scholarship Council (202006270005). Most of the figures were plotted with Generic Mapping Tools (GMT, Wessel & Smith, 1998) software. We thank the National Iranian Oil company for the geological cross-section data and Mohammad Tatar for the relocated aftershocks. We also thank the Editor Paul Tregoning, the anonymous Associate Editor and two reviewers for their constructive comments. Guangyu Xu an Jyr-Ching Hu have been funded by National Natural Science Foundation of China (42104008) and Ministry of Science and Technology in Taiwan (109-2116-M-002-028), respectively. Open Access funding enabled and organized by Projekt DEAL.
PY - 2022/12/1
Y1 - 2022/12/1
N2 - We use interferometric synthetic aperture radar observations to investigate the fault geometry and afterslip evolution within 3 years after a mainshock. The postseismic observations favor a ramp-flat structure in which the flat angle should be lower than 10°. The postseismic deformation is dominated by afterslip, while the viscoelastic response is negligible. A multisegment, stress-driven afterslip model (hereafter called the SA-2 model) with depth-varying frictional properties better explains the spatiotemporal evolution of the postseismic deformation than a two-segment, stress-driven afterslip model (hereafter called the SA-1 model). Although the SA-2 model does not improve the misfit significantly, this multisegment fault with depth-varying friction is more physically plausible given the depth-varying mechanical stratigraphy in the region. Compared to the kinematic afterslip model, the mechanical afterslip models with friction variation tend to underestimate early postseismic deformation to the west, which may indicate more complex fault friction than we expected. Both the kinematic and stress-driven models can resolve downdip afterslip, although it could be affected by data noise and model resolution. The transition depth of the sedimentary cover basement interface inferred by afterslip models is ∼12 km in the seismogenic zone, which coincides with the regional stratigraphic profile. Because the coseismic rupture propagated along a basement-involved fault while the postseismic slip may activate the frontal structures and/or shallower detachments in the sedimentary cover, the 2017 Sarpol-e Zahab earthquake may have acted as a typical event that contributed to both thick- and thin-skinned shortening of the Zagros in both seismic and aseismic ways.
AB - We use interferometric synthetic aperture radar observations to investigate the fault geometry and afterslip evolution within 3 years after a mainshock. The postseismic observations favor a ramp-flat structure in which the flat angle should be lower than 10°. The postseismic deformation is dominated by afterslip, while the viscoelastic response is negligible. A multisegment, stress-driven afterslip model (hereafter called the SA-2 model) with depth-varying frictional properties better explains the spatiotemporal evolution of the postseismic deformation than a two-segment, stress-driven afterslip model (hereafter called the SA-1 model). Although the SA-2 model does not improve the misfit significantly, this multisegment fault with depth-varying friction is more physically plausible given the depth-varying mechanical stratigraphy in the region. Compared to the kinematic afterslip model, the mechanical afterslip models with friction variation tend to underestimate early postseismic deformation to the west, which may indicate more complex fault friction than we expected. Both the kinematic and stress-driven models can resolve downdip afterslip, although it could be affected by data noise and model resolution. The transition depth of the sedimentary cover basement interface inferred by afterslip models is ∼12 km in the seismogenic zone, which coincides with the regional stratigraphic profile. Because the coseismic rupture propagated along a basement-involved fault while the postseismic slip may activate the frontal structures and/or shallower detachments in the sedimentary cover, the 2017 Sarpol-e Zahab earthquake may have acted as a typical event that contributed to both thick- and thin-skinned shortening of the Zagros in both seismic and aseismic ways.
UR - http://www.scopus.com/inward/record.url?scp=85145202848&partnerID=8YFLogxK
U2 - 10.1029/2022JB025148
DO - 10.1029/2022JB025148
M3 - Article
AN - SCOPUS:85145202848
VL - 127
JO - Journal of Geophysical Research: Solid Earth
JF - Journal of Geophysical Research: Solid Earth
SN - 2169-9313
IS - 12
M1 - e2022JB025148
ER -