Details
Original language | English |
---|---|
Title of host publication | Advances in optical thin films II |
Subtitle of host publication | 13 - 15 September 2005, Jena, Germany |
Place of Publication | Bellingham |
Publisher | SPIE |
ISBN (print) | 0-8194-5981-X |
Publication status | Published - 5 Oct 2005 |
Externally published | Yes |
Event | Advances in Optical Thin Films II - Jena, Germany Duration: 13 Sept 2005 → 15 Sept 2005 |
Publication series
Name | Proceedings of SPIE - The International Society for Optical Engineering |
---|---|
Publisher | SPIE |
Volume | 5963 |
ISSN (Print) | 0277-786X |
Abstract
Progress was achieved in the last years in the development of multilayer mirrors used in storage ring Free Electron Lasers (FEL) operating in the vacuum ultraviolet spectral range. Based on dense oxide coatings deposited by Ion Beam Sputtering, a stable lasing at 190 nm was demonstrated. The extension towards shorter wavelengths had to overcome severe problems connected to the radiation resistance and the necessary reflectivity of the resonator mirrors. In this context, radiation resistance can be considered as the ability of the mirror materials to withstand the high power laser radiation and the intense energetic background radiation generated in the synchrotron source. The bombardment with high energetic photons leads to irreversible changes and a coloration on the specimen. Reflectivity requirements can be evaluated from the tolerable losses of FEL systems. At ELETTRA FEL the resonator mirror reflectivity must be above 95 %. Evaporated fluoride multilayer mirrors provide sufficient reflectivity, but they do not exhibit an adequate radiation resistance. Pure oxide multilayers show a sufficient radiation resistance, but they cannot reach the necessary reflectivity below 190 nm. A successful approach combines evaporated fluoride multilayer stack with a dense protection layer of silicon dioxide deposited by Ion Beam Sputtering. Such mirror systems were produced reaching a reflectivity of approximately 99 % at 180 nm. Lasing in the storage ring FEL at ELETTRA was realised in the range between 176 - 179 nm. The mirror reflectivity shows only a slight degradation after lasing, which could be fully restored after the lasing experiment.
Keywords
- Free electron laser, Radiation resistance, Synchrotron radiation, VUV characterisation, VUV coatings
ASJC Scopus subject areas
- Materials Science(all)
- Electronic, Optical and Magnetic Materials
- Physics and Astronomy(all)
- Condensed Matter Physics
- Computer Science(all)
- Computer Science Applications
- Mathematics(all)
- Applied Mathematics
- Engineering(all)
- Electrical and Electronic Engineering
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
Advances in optical thin films II: 13 - 15 September 2005, Jena, Germany. Bellingham: SPIE, 2005. (Proceedings of SPIE - The International Society for Optical Engineering; Vol. 5963).
Research output: Chapter in book/report/conference proceeding › Conference contribution › Research › peer review
}
TY - GEN
T1 - Deposition of robust multilayer mirror coatings for Storage Ring FEL lasing at 176 nm
AU - Günster, Stefan
AU - Ristau, Detlev
AU - Trovó, Mauro
AU - Danailov, Miltcho Boyanov
AU - Gatto, Alexandre
AU - Kaiser, Norbert
AU - Sarto, Fransesca
AU - Piegari, Angela
PY - 2005/10/5
Y1 - 2005/10/5
N2 - Progress was achieved in the last years in the development of multilayer mirrors used in storage ring Free Electron Lasers (FEL) operating in the vacuum ultraviolet spectral range. Based on dense oxide coatings deposited by Ion Beam Sputtering, a stable lasing at 190 nm was demonstrated. The extension towards shorter wavelengths had to overcome severe problems connected to the radiation resistance and the necessary reflectivity of the resonator mirrors. In this context, radiation resistance can be considered as the ability of the mirror materials to withstand the high power laser radiation and the intense energetic background radiation generated in the synchrotron source. The bombardment with high energetic photons leads to irreversible changes and a coloration on the specimen. Reflectivity requirements can be evaluated from the tolerable losses of FEL systems. At ELETTRA FEL the resonator mirror reflectivity must be above 95 %. Evaporated fluoride multilayer mirrors provide sufficient reflectivity, but they do not exhibit an adequate radiation resistance. Pure oxide multilayers show a sufficient radiation resistance, but they cannot reach the necessary reflectivity below 190 nm. A successful approach combines evaporated fluoride multilayer stack with a dense protection layer of silicon dioxide deposited by Ion Beam Sputtering. Such mirror systems were produced reaching a reflectivity of approximately 99 % at 180 nm. Lasing in the storage ring FEL at ELETTRA was realised in the range between 176 - 179 nm. The mirror reflectivity shows only a slight degradation after lasing, which could be fully restored after the lasing experiment.
AB - Progress was achieved in the last years in the development of multilayer mirrors used in storage ring Free Electron Lasers (FEL) operating in the vacuum ultraviolet spectral range. Based on dense oxide coatings deposited by Ion Beam Sputtering, a stable lasing at 190 nm was demonstrated. The extension towards shorter wavelengths had to overcome severe problems connected to the radiation resistance and the necessary reflectivity of the resonator mirrors. In this context, radiation resistance can be considered as the ability of the mirror materials to withstand the high power laser radiation and the intense energetic background radiation generated in the synchrotron source. The bombardment with high energetic photons leads to irreversible changes and a coloration on the specimen. Reflectivity requirements can be evaluated from the tolerable losses of FEL systems. At ELETTRA FEL the resonator mirror reflectivity must be above 95 %. Evaporated fluoride multilayer mirrors provide sufficient reflectivity, but they do not exhibit an adequate radiation resistance. Pure oxide multilayers show a sufficient radiation resistance, but they cannot reach the necessary reflectivity below 190 nm. A successful approach combines evaporated fluoride multilayer stack with a dense protection layer of silicon dioxide deposited by Ion Beam Sputtering. Such mirror systems were produced reaching a reflectivity of approximately 99 % at 180 nm. Lasing in the storage ring FEL at ELETTRA was realised in the range between 176 - 179 nm. The mirror reflectivity shows only a slight degradation after lasing, which could be fully restored after the lasing experiment.
KW - Free electron laser
KW - Radiation resistance
KW - Synchrotron radiation
KW - VUV characterisation
KW - VUV coatings
UR - http://www.scopus.com/inward/record.url?scp=33144476857&partnerID=8YFLogxK
U2 - 10.1117/12.625384
DO - 10.1117/12.625384
M3 - Conference contribution
AN - SCOPUS:33144476857
SN - 0-8194-5981-X
T3 - Proceedings of SPIE - The International Society for Optical Engineering
BT - Advances in optical thin films II
PB - SPIE
CY - Bellingham
T2 - Advances in Optical Thin Films II
Y2 - 13 September 2005 through 15 September 2005
ER -