Details
Original language | English |
---|---|
Pages (from-to) | 1180-1199 |
Number of pages | 20 |
Journal | Plant physiology |
Volume | 195 |
Issue number | 2 |
Early online date | 7 Dec 2023 |
Publication status | Published - Jun 2024 |
Abstract
The mitochondrial proteome consists of numerous types of proteins which either are encoded and synthesized in the mitochondria, or encoded in the cell nucleus, synthesized in the cytoplasm and imported into the mitochondria. Their synthesis in the mitochondria, but not in the nucleus, relies on the editing of the primary transcripts of their genes at defined sites. Here, we present an in-depth investigation of the mitochondrial proteome of Arabidopsis (Arabidopsis thaliana) and a public online platform for the exploration of the data. For the analysis of our shotgun proteomic data, an Arabidopsis sequence database was created comprising all available protein sequences from the TAIR10 and Araport11 databases, supplemented with sequences of proteins translated from edited and nonedited transcripts of mitochondria. Amino acid sequences derived from partially edited transcripts were also added to analyze proteins encoded by the mitochondrial genome. Proteins were digested in parallel with six different endoproteases to obtain maximum proteome coverage. The resulting peptide fractions were finally analyzed using liquid chromatography coupled to ion mobility spectrometry and tandem mass spectrometry. We generated a “deep mitochondrial proteome” of 4,692 proteins. 1,339 proteins assigned to mitochondria by the SUBA5 database (https://suba. live) accounted for >80% of the total protein mass of our fractions. The coverage of proteins by identified peptides was particularly high compared to single-protease digests, allowing the exploration of differential splicing and RNA editing events at the protein level. We show that proteins translated from nonedited transcripts can be incorporated into native mitoribosomes and the ATP synthase complex. We present a portal for the use of our data, based on “proteomaps” with directly linked protein data. The portal is available at www.proteomeexplorer.de.
ASJC Scopus subject areas
- Biochemistry, Genetics and Molecular Biology(all)
- Genetics
- Biochemistry, Genetics and Molecular Biology(all)
- Physiology
- Agricultural and Biological Sciences(all)
- Plant Science
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Plant physiology, Vol. 195, No. 2, 06.2024, p. 1180-1199.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Deep Proteomics reveals incorporation of unedited proteins into mitochondrial protein complexes in Arabidopsis
AU - Rugen, Nils
AU - Senkler, Michael
AU - Braun, Hans-Peter
N1 - Publisher Copyright: © The Author(s) 2023. Published by Oxford University Press on behalf of American Society of Plant Biologists.
PY - 2024/6
Y1 - 2024/6
N2 - The mitochondrial proteome consists of numerous types of proteins which either are encoded and synthesized in the mitochondria, or encoded in the cell nucleus, synthesized in the cytoplasm and imported into the mitochondria. Their synthesis in the mitochondria, but not in the nucleus, relies on the editing of the primary transcripts of their genes at defined sites. Here, we present an in-depth investigation of the mitochondrial proteome of Arabidopsis (Arabidopsis thaliana) and a public online platform for the exploration of the data. For the analysis of our shotgun proteomic data, an Arabidopsis sequence database was created comprising all available protein sequences from the TAIR10 and Araport11 databases, supplemented with sequences of proteins translated from edited and nonedited transcripts of mitochondria. Amino acid sequences derived from partially edited transcripts were also added to analyze proteins encoded by the mitochondrial genome. Proteins were digested in parallel with six different endoproteases to obtain maximum proteome coverage. The resulting peptide fractions were finally analyzed using liquid chromatography coupled to ion mobility spectrometry and tandem mass spectrometry. We generated a “deep mitochondrial proteome” of 4,692 proteins. 1,339 proteins assigned to mitochondria by the SUBA5 database (https://suba. live) accounted for >80% of the total protein mass of our fractions. The coverage of proteins by identified peptides was particularly high compared to single-protease digests, allowing the exploration of differential splicing and RNA editing events at the protein level. We show that proteins translated from nonedited transcripts can be incorporated into native mitoribosomes and the ATP synthase complex. We present a portal for the use of our data, based on “proteomaps” with directly linked protein data. The portal is available at www.proteomeexplorer.de.
AB - The mitochondrial proteome consists of numerous types of proteins which either are encoded and synthesized in the mitochondria, or encoded in the cell nucleus, synthesized in the cytoplasm and imported into the mitochondria. Their synthesis in the mitochondria, but not in the nucleus, relies on the editing of the primary transcripts of their genes at defined sites. Here, we present an in-depth investigation of the mitochondrial proteome of Arabidopsis (Arabidopsis thaliana) and a public online platform for the exploration of the data. For the analysis of our shotgun proteomic data, an Arabidopsis sequence database was created comprising all available protein sequences from the TAIR10 and Araport11 databases, supplemented with sequences of proteins translated from edited and nonedited transcripts of mitochondria. Amino acid sequences derived from partially edited transcripts were also added to analyze proteins encoded by the mitochondrial genome. Proteins were digested in parallel with six different endoproteases to obtain maximum proteome coverage. The resulting peptide fractions were finally analyzed using liquid chromatography coupled to ion mobility spectrometry and tandem mass spectrometry. We generated a “deep mitochondrial proteome” of 4,692 proteins. 1,339 proteins assigned to mitochondria by the SUBA5 database (https://suba. live) accounted for >80% of the total protein mass of our fractions. The coverage of proteins by identified peptides was particularly high compared to single-protease digests, allowing the exploration of differential splicing and RNA editing events at the protein level. We show that proteins translated from nonedited transcripts can be incorporated into native mitoribosomes and the ATP synthase complex. We present a portal for the use of our data, based on “proteomaps” with directly linked protein data. The portal is available at www.proteomeexplorer.de.
UR - http://www.scopus.com/inward/record.url?scp=85195028727&partnerID=8YFLogxK
U2 - 10.1093/plphys/kiad655
DO - 10.1093/plphys/kiad655
M3 - Article
VL - 195
SP - 1180
EP - 1199
JO - Plant physiology
JF - Plant physiology
SN - 0032-0889
IS - 2
ER -