Crystallization experiments in rhyolitic systems: The effect of temperature cycling and starting material on crystal size distribution

Research output: Contribution to journalArticleResearchpeer review

Authors

Research Organisations

External Research Organisations

  • Universidade Federal do Rio de Janeiro
View graph of relations

Details

Original languageEnglish
Pages (from-to)2284-2294
Number of pages11
JournalAmerican Mineralogist
Volume102
Issue number11
Publication statusPublished - 1 Nov 2017

Abstract

One of the various problems faced in experimental petrology is the fact that most experimental products obtained by crystallization experiments are too small, making their accurate identification by electron microprobe and laser ablation analyses very difficult. This problem is magnified when a highly polymerized starting material is used for experiments at low temperature (e.g., 700-800 °C). In this study, we present the results of crystallization experiments performed using a rhyolitic starting glass in which we test the potential of temperature cycling and pre-hydrated starting material to increase crystal size and discuss the effect of those variables on the attainment of chemical equilibrium. Experiments were performed at different temperatures (725 to 815 °C) and pressures (1 and 2 kbar), under water-saturated conditions (aH2O = 1; with aH2O being the water activity). During the experiments, temperature was either constant or cycled to ±15 °C around the target temperature during the first half of the runs. We used either a pre-hydrated (7 wt% H2O) rhyolitic glass or a dry rhyolitic glass to which 7 wt% H2O was added during capsule preparation. Our results differ between 1 and 2 kbar experiments. At 1 kbar, plagioclase and orthopyroxene were the main crystalline phases affected and temperature cycling (±15 °C) did not increase the crystal size of these phases. In contrast, if only the nature of the starting material is considered (dry glass vs. pre-hydrated), the use of a pre-hydrated starting material successfully increased the overall crystal size and decreased the crystal number density. At 2 kbar, plagioclase and amphibole were the main phases and the largest crystals were also obtained when pre-hydrated starting material was used. Contrary to experiments at 1 kbar, temperature cycling also increased the overall crystal size. The different effects of temperature cycling at 1 and 2 kbar are attributed (1) to the different cation diffusivities at 1 and 2 kbar caused by different melt water concentrations and (2) the negligible effect of temperature cycling at 1 kbar (±15 °C) is explained by little dissolution of phases, so that small crystals were already too large to be completely consumed by the dissolution process in the high temperature interval. The results demonstrate that temperature oscillation (depending on the amplitude) and the nature of the starting material (pre-hydrated vs. dry glass + water) are two parameters that can contribute to increase crystal sizes in experiments with rhyolitic melts. However, we also observed that the use of a pre-hydrated starting material increased the occurrence of zoned plagioclase crystals, which may indicate that chemical equilibrium was not perfectly reached.

Keywords

    Crystal size distribution, Crystallization experiment, Rhyolite, Temperature cycling

ASJC Scopus subject areas

Cite this

Crystallization experiments in rhyolitic systems: The effect of temperature cycling and starting material on crystal size distribution. / Da Silva, Marize Muniz; Holtz, Francois; Namur, Olivier.
In: American Mineralogist, Vol. 102, No. 11, 01.11.2017, p. 2284-2294.

Research output: Contribution to journalArticleResearchpeer review

Download
@article{f187d5161db5420eb7ede00c33d468c7,
title = "Crystallization experiments in rhyolitic systems: The effect of temperature cycling and starting material on crystal size distribution",
abstract = "One of the various problems faced in experimental petrology is the fact that most experimental products obtained by crystallization experiments are too small, making their accurate identification by electron microprobe and laser ablation analyses very difficult. This problem is magnified when a highly polymerized starting material is used for experiments at low temperature (e.g., 700-800 °C). In this study, we present the results of crystallization experiments performed using a rhyolitic starting glass in which we test the potential of temperature cycling and pre-hydrated starting material to increase crystal size and discuss the effect of those variables on the attainment of chemical equilibrium. Experiments were performed at different temperatures (725 to 815 °C) and pressures (1 and 2 kbar), under water-saturated conditions (aH2O = 1; with aH2O being the water activity). During the experiments, temperature was either constant or cycled to ±15 °C around the target temperature during the first half of the runs. We used either a pre-hydrated (7 wt% H2O) rhyolitic glass or a dry rhyolitic glass to which 7 wt% H2O was added during capsule preparation. Our results differ between 1 and 2 kbar experiments. At 1 kbar, plagioclase and orthopyroxene were the main crystalline phases affected and temperature cycling (±15 °C) did not increase the crystal size of these phases. In contrast, if only the nature of the starting material is considered (dry glass vs. pre-hydrated), the use of a pre-hydrated starting material successfully increased the overall crystal size and decreased the crystal number density. At 2 kbar, plagioclase and amphibole were the main phases and the largest crystals were also obtained when pre-hydrated starting material was used. Contrary to experiments at 1 kbar, temperature cycling also increased the overall crystal size. The different effects of temperature cycling at 1 and 2 kbar are attributed (1) to the different cation diffusivities at 1 and 2 kbar caused by different melt water concentrations and (2) the negligible effect of temperature cycling at 1 kbar (±15 °C) is explained by little dissolution of phases, so that small crystals were already too large to be completely consumed by the dissolution process in the high temperature interval. The results demonstrate that temperature oscillation (depending on the amplitude) and the nature of the starting material (pre-hydrated vs. dry glass + water) are two parameters that can contribute to increase crystal sizes in experiments with rhyolitic melts. However, we also observed that the use of a pre-hydrated starting material increased the occurrence of zoned plagioclase crystals, which may indicate that chemical equilibrium was not perfectly reached.",
keywords = "Crystal size distribution, Crystallization experiment, Rhyolite, Temperature cycling",
author = "{Da Silva}, {Marize Muniz} and Francois Holtz and Olivier Namur",
note = "Funding Information: We thank the head of the workshop at the Institute for Mineralogy at Leibniz University Hannover, Ulrich Kroll, for technical support and Julian Feige for sample preparation. Further thanks go to Eric Wolff and Chao Zhang for analytical support and to Adriana Currin for language revision. We also thank the editor Charles Lesher, as well as the reviewers Julia Hammer and Ryan D. Mills for their comments and suggestions that helped improve the manuscript. This work was funded by the DAAD and CNPq (fellowship to the first author) and the Deutsche Forschungsgemeinschaft (DFG; project HO1337/31 in the frame of the ICDP program). Olivier Namur acknowledges support from an Emmy Noether program from the DFG. Publisher Copyright: {\textcopyright} 2017 Walter de Gruyter GmbH. All rights reserved. Copyright: Copyright 2018 Elsevier B.V., All rights reserved.",
year = "2017",
month = nov,
day = "1",
doi = "10.2138/am-2017-5981",
language = "English",
volume = "102",
pages = "2284--2294",
journal = "American Mineralogist",
issn = "0003-004X",
publisher = "Walter de Gruyter GmbH",
number = "11",

}

Download

TY - JOUR

T1 - Crystallization experiments in rhyolitic systems

T2 - The effect of temperature cycling and starting material on crystal size distribution

AU - Da Silva, Marize Muniz

AU - Holtz, Francois

AU - Namur, Olivier

N1 - Funding Information: We thank the head of the workshop at the Institute for Mineralogy at Leibniz University Hannover, Ulrich Kroll, for technical support and Julian Feige for sample preparation. Further thanks go to Eric Wolff and Chao Zhang for analytical support and to Adriana Currin for language revision. We also thank the editor Charles Lesher, as well as the reviewers Julia Hammer and Ryan D. Mills for their comments and suggestions that helped improve the manuscript. This work was funded by the DAAD and CNPq (fellowship to the first author) and the Deutsche Forschungsgemeinschaft (DFG; project HO1337/31 in the frame of the ICDP program). Olivier Namur acknowledges support from an Emmy Noether program from the DFG. Publisher Copyright: © 2017 Walter de Gruyter GmbH. All rights reserved. Copyright: Copyright 2018 Elsevier B.V., All rights reserved.

PY - 2017/11/1

Y1 - 2017/11/1

N2 - One of the various problems faced in experimental petrology is the fact that most experimental products obtained by crystallization experiments are too small, making their accurate identification by electron microprobe and laser ablation analyses very difficult. This problem is magnified when a highly polymerized starting material is used for experiments at low temperature (e.g., 700-800 °C). In this study, we present the results of crystallization experiments performed using a rhyolitic starting glass in which we test the potential of temperature cycling and pre-hydrated starting material to increase crystal size and discuss the effect of those variables on the attainment of chemical equilibrium. Experiments were performed at different temperatures (725 to 815 °C) and pressures (1 and 2 kbar), under water-saturated conditions (aH2O = 1; with aH2O being the water activity). During the experiments, temperature was either constant or cycled to ±15 °C around the target temperature during the first half of the runs. We used either a pre-hydrated (7 wt% H2O) rhyolitic glass or a dry rhyolitic glass to which 7 wt% H2O was added during capsule preparation. Our results differ between 1 and 2 kbar experiments. At 1 kbar, plagioclase and orthopyroxene were the main crystalline phases affected and temperature cycling (±15 °C) did not increase the crystal size of these phases. In contrast, if only the nature of the starting material is considered (dry glass vs. pre-hydrated), the use of a pre-hydrated starting material successfully increased the overall crystal size and decreased the crystal number density. At 2 kbar, plagioclase and amphibole were the main phases and the largest crystals were also obtained when pre-hydrated starting material was used. Contrary to experiments at 1 kbar, temperature cycling also increased the overall crystal size. The different effects of temperature cycling at 1 and 2 kbar are attributed (1) to the different cation diffusivities at 1 and 2 kbar caused by different melt water concentrations and (2) the negligible effect of temperature cycling at 1 kbar (±15 °C) is explained by little dissolution of phases, so that small crystals were already too large to be completely consumed by the dissolution process in the high temperature interval. The results demonstrate that temperature oscillation (depending on the amplitude) and the nature of the starting material (pre-hydrated vs. dry glass + water) are two parameters that can contribute to increase crystal sizes in experiments with rhyolitic melts. However, we also observed that the use of a pre-hydrated starting material increased the occurrence of zoned plagioclase crystals, which may indicate that chemical equilibrium was not perfectly reached.

AB - One of the various problems faced in experimental petrology is the fact that most experimental products obtained by crystallization experiments are too small, making their accurate identification by electron microprobe and laser ablation analyses very difficult. This problem is magnified when a highly polymerized starting material is used for experiments at low temperature (e.g., 700-800 °C). In this study, we present the results of crystallization experiments performed using a rhyolitic starting glass in which we test the potential of temperature cycling and pre-hydrated starting material to increase crystal size and discuss the effect of those variables on the attainment of chemical equilibrium. Experiments were performed at different temperatures (725 to 815 °C) and pressures (1 and 2 kbar), under water-saturated conditions (aH2O = 1; with aH2O being the water activity). During the experiments, temperature was either constant or cycled to ±15 °C around the target temperature during the first half of the runs. We used either a pre-hydrated (7 wt% H2O) rhyolitic glass or a dry rhyolitic glass to which 7 wt% H2O was added during capsule preparation. Our results differ between 1 and 2 kbar experiments. At 1 kbar, plagioclase and orthopyroxene were the main crystalline phases affected and temperature cycling (±15 °C) did not increase the crystal size of these phases. In contrast, if only the nature of the starting material is considered (dry glass vs. pre-hydrated), the use of a pre-hydrated starting material successfully increased the overall crystal size and decreased the crystal number density. At 2 kbar, plagioclase and amphibole were the main phases and the largest crystals were also obtained when pre-hydrated starting material was used. Contrary to experiments at 1 kbar, temperature cycling also increased the overall crystal size. The different effects of temperature cycling at 1 and 2 kbar are attributed (1) to the different cation diffusivities at 1 and 2 kbar caused by different melt water concentrations and (2) the negligible effect of temperature cycling at 1 kbar (±15 °C) is explained by little dissolution of phases, so that small crystals were already too large to be completely consumed by the dissolution process in the high temperature interval. The results demonstrate that temperature oscillation (depending on the amplitude) and the nature of the starting material (pre-hydrated vs. dry glass + water) are two parameters that can contribute to increase crystal sizes in experiments with rhyolitic melts. However, we also observed that the use of a pre-hydrated starting material increased the occurrence of zoned plagioclase crystals, which may indicate that chemical equilibrium was not perfectly reached.

KW - Crystal size distribution

KW - Crystallization experiment

KW - Rhyolite

KW - Temperature cycling

UR - http://www.scopus.com/inward/record.url?scp=85048331323&partnerID=8YFLogxK

U2 - 10.2138/am-2017-5981

DO - 10.2138/am-2017-5981

M3 - Article

AN - SCOPUS:85048331323

VL - 102

SP - 2284

EP - 2294

JO - American Mineralogist

JF - American Mineralogist

SN - 0003-004X

IS - 11

ER -

By the same author(s)