Details
Original language | English |
---|---|
Article number | 84 |
Journal | Contributions to Mineralogy and Petrology |
Volume | 174 |
Issue number | 10 |
Publication status | Published - Oct 2019 |
Externally published | Yes |
Abstract
The understanding of the geochemical and petrophysical evolution of magmas forming intermediate calc-alkaline batholiths at shallow crustal levels critically depends on knowledge of the phase equilibria relations along the liquid line of descent. Here, we present experimental results for a tonalitic system at a pressure of 200 MPa and under water-saturated conditions. Melting experiments were performed at temperatures between 700 and 1000 °C in externally heated HCM pressure vessels, with oxygen fugacity controlled close to the Ni–NiO buffer equilibrium (NNO) employing an argon–methane mixture as pressure medium and Co–Pd redox sensors to verify fO 2 conditions. Natural rock powder of a medium-K tonalite from the Adamello Batholith in Northern Italy served as experimental starting material. Based on compositional data of stable phases in the run products and images of entire run charges, mass balance calculations as well as image processing were performed to investigate the evolution of the crystal/melt ratio with respect to temperature. Furthermore, compositional trends of minerals as well as the liquid line of descent of residual melts were obtained. Orthopyroxene, clinopyroxene and plagioclase were identified as near-liquidus phases (below 990 °C). At 900 °C, amphibole joins the solid-phase assemblage at the expense of clinopyroxene, indicating the existence of a peritectic relationship. After an initial near-linear decrease with temperature, residual melt fractions exhibit a plateau of 45–55 vol. % between 750 and 850 °C, followed by a rapid decrease coinciding with quartz saturation at 725 °C. Compositions of residual liquids evolve along a typical calc-alkaline differentiation trend with decreasing temperature (increasing SiO 2 and decreasing TiO 2, Al 2O 3, CaO, MgO and FeO contents) and become peraluminous below 900 °C. Intermediate to acidic rocks from the Adamello follow the experimental liquid line of descent indicating that the observed compositional spread of the natural intermediate composition rock record can be explained by low-pressure magma differentiation and liquid extraction. Experimentally determined zircon saturation levels are at low temperatures distinctly lower compared to existing and often used Zr-saturation models, but fully consistent with observed and modelled Zr-evolution trends from the natural rock record of the Southern Adamello Batholith inferring that zircon saturation in these intermediate to felsic plutonic rocks occurred at 800–830 °C corresponding to a melt fraction of about 50 vol. %.
Keywords
- Adamello, Arc magmatism, Calc-alkaline intrusion, Crystal/melt ratio, Equilibrium crystallisation, Tonalite, Upper crustal plutons, Zircon saturation
ASJC Scopus subject areas
- Earth and Planetary Sciences(all)
- Geophysics
- Earth and Planetary Sciences(all)
- Geochemistry and Petrology
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Contributions to Mineralogy and Petrology, Vol. 174, No. 10, 84, 10.2019.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Crystallisation and zircon saturation of calc-alkaline tonalite from the Adamello Batholith at upper crustal conditions: an experimental study
AU - Marxer, Felix
AU - Ulmer, Peter
N1 - Publisher Copyright: © 2019, The Author(s).
PY - 2019/10
Y1 - 2019/10
N2 - The understanding of the geochemical and petrophysical evolution of magmas forming intermediate calc-alkaline batholiths at shallow crustal levels critically depends on knowledge of the phase equilibria relations along the liquid line of descent. Here, we present experimental results for a tonalitic system at a pressure of 200 MPa and under water-saturated conditions. Melting experiments were performed at temperatures between 700 and 1000 °C in externally heated HCM pressure vessels, with oxygen fugacity controlled close to the Ni–NiO buffer equilibrium (NNO) employing an argon–methane mixture as pressure medium and Co–Pd redox sensors to verify fO 2 conditions. Natural rock powder of a medium-K tonalite from the Adamello Batholith in Northern Italy served as experimental starting material. Based on compositional data of stable phases in the run products and images of entire run charges, mass balance calculations as well as image processing were performed to investigate the evolution of the crystal/melt ratio with respect to temperature. Furthermore, compositional trends of minerals as well as the liquid line of descent of residual melts were obtained. Orthopyroxene, clinopyroxene and plagioclase were identified as near-liquidus phases (below 990 °C). At 900 °C, amphibole joins the solid-phase assemblage at the expense of clinopyroxene, indicating the existence of a peritectic relationship. After an initial near-linear decrease with temperature, residual melt fractions exhibit a plateau of 45–55 vol. % between 750 and 850 °C, followed by a rapid decrease coinciding with quartz saturation at 725 °C. Compositions of residual liquids evolve along a typical calc-alkaline differentiation trend with decreasing temperature (increasing SiO 2 and decreasing TiO 2, Al 2O 3, CaO, MgO and FeO contents) and become peraluminous below 900 °C. Intermediate to acidic rocks from the Adamello follow the experimental liquid line of descent indicating that the observed compositional spread of the natural intermediate composition rock record can be explained by low-pressure magma differentiation and liquid extraction. Experimentally determined zircon saturation levels are at low temperatures distinctly lower compared to existing and often used Zr-saturation models, but fully consistent with observed and modelled Zr-evolution trends from the natural rock record of the Southern Adamello Batholith inferring that zircon saturation in these intermediate to felsic plutonic rocks occurred at 800–830 °C corresponding to a melt fraction of about 50 vol. %.
AB - The understanding of the geochemical and petrophysical evolution of magmas forming intermediate calc-alkaline batholiths at shallow crustal levels critically depends on knowledge of the phase equilibria relations along the liquid line of descent. Here, we present experimental results for a tonalitic system at a pressure of 200 MPa and under water-saturated conditions. Melting experiments were performed at temperatures between 700 and 1000 °C in externally heated HCM pressure vessels, with oxygen fugacity controlled close to the Ni–NiO buffer equilibrium (NNO) employing an argon–methane mixture as pressure medium and Co–Pd redox sensors to verify fO 2 conditions. Natural rock powder of a medium-K tonalite from the Adamello Batholith in Northern Italy served as experimental starting material. Based on compositional data of stable phases in the run products and images of entire run charges, mass balance calculations as well as image processing were performed to investigate the evolution of the crystal/melt ratio with respect to temperature. Furthermore, compositional trends of minerals as well as the liquid line of descent of residual melts were obtained. Orthopyroxene, clinopyroxene and plagioclase were identified as near-liquidus phases (below 990 °C). At 900 °C, amphibole joins the solid-phase assemblage at the expense of clinopyroxene, indicating the existence of a peritectic relationship. After an initial near-linear decrease with temperature, residual melt fractions exhibit a plateau of 45–55 vol. % between 750 and 850 °C, followed by a rapid decrease coinciding with quartz saturation at 725 °C. Compositions of residual liquids evolve along a typical calc-alkaline differentiation trend with decreasing temperature (increasing SiO 2 and decreasing TiO 2, Al 2O 3, CaO, MgO and FeO contents) and become peraluminous below 900 °C. Intermediate to acidic rocks from the Adamello follow the experimental liquid line of descent indicating that the observed compositional spread of the natural intermediate composition rock record can be explained by low-pressure magma differentiation and liquid extraction. Experimentally determined zircon saturation levels are at low temperatures distinctly lower compared to existing and often used Zr-saturation models, but fully consistent with observed and modelled Zr-evolution trends from the natural rock record of the Southern Adamello Batholith inferring that zircon saturation in these intermediate to felsic plutonic rocks occurred at 800–830 °C corresponding to a melt fraction of about 50 vol. %.
KW - Adamello
KW - Arc magmatism
KW - Calc-alkaline intrusion
KW - Crystal/melt ratio
KW - Equilibrium crystallisation
KW - Tonalite
KW - Upper crustal plutons
KW - Zircon saturation
UR - http://www.scopus.com/inward/record.url?scp=85071575388&partnerID=8YFLogxK
U2 - 10.1007/s00410-019-1619-x
DO - 10.1007/s00410-019-1619-x
M3 - Article
VL - 174
JO - Contributions to Mineralogy and Petrology
JF - Contributions to Mineralogy and Petrology
SN - 0010-7999
IS - 10
M1 - 84
ER -