Crystallisation and zircon saturation of calc-alkaline tonalite from the Adamello Batholith at upper crustal conditions: an experimental study

Research output: Contribution to journalArticleResearchpeer review

Authors

External Research Organisations

  • ETH Zurich
View graph of relations

Details

Original languageEnglish
Article number84
JournalContributions to Mineralogy and Petrology
Volume174
Issue number10
Publication statusPublished - Oct 2019
Externally publishedYes

Abstract

The understanding of the geochemical and petrophysical evolution of magmas forming intermediate calc-alkaline batholiths at shallow crustal levels critically depends on knowledge of the phase equilibria relations along the liquid line of descent. Here, we present experimental results for a tonalitic system at a pressure of 200 MPa and under water-saturated conditions. Melting experiments were performed at temperatures between 700 and 1000 °C in externally heated HCM pressure vessels, with oxygen fugacity controlled close to the Ni–NiO buffer equilibrium (NNO) employing an argon–methane mixture as pressure medium and Co–Pd redox sensors to verify fO 2 conditions. Natural rock powder of a medium-K tonalite from the Adamello Batholith in Northern Italy served as experimental starting material. Based on compositional data of stable phases in the run products and images of entire run charges, mass balance calculations as well as image processing were performed to investigate the evolution of the crystal/melt ratio with respect to temperature. Furthermore, compositional trends of minerals as well as the liquid line of descent of residual melts were obtained. Orthopyroxene, clinopyroxene and plagioclase were identified as near-liquidus phases (below 990 °C). At 900 °C, amphibole joins the solid-phase assemblage at the expense of clinopyroxene, indicating the existence of a peritectic relationship. After an initial near-linear decrease with temperature, residual melt fractions exhibit a plateau of 45–55 vol. % between 750 and 850 °C, followed by a rapid decrease coinciding with quartz saturation at 725 °C. Compositions of residual liquids evolve along a typical calc-alkaline differentiation trend with decreasing temperature (increasing SiO 2 and decreasing TiO 2, Al 2O 3, CaO, MgO and FeO contents) and become peraluminous below 900 °C. Intermediate to acidic rocks from the Adamello follow the experimental liquid line of descent indicating that the observed compositional spread of the natural intermediate composition rock record can be explained by low-pressure magma differentiation and liquid extraction. Experimentally determined zircon saturation levels are at low temperatures distinctly lower compared to existing and often used Zr-saturation models, but fully consistent with observed and modelled Zr-evolution trends from the natural rock record of the Southern Adamello Batholith inferring that zircon saturation in these intermediate to felsic plutonic rocks occurred at 800–830 °C corresponding to a melt fraction of about 50 vol. %.

Keywords

    Adamello, Arc magmatism, Calc-alkaline intrusion, Crystal/melt ratio, Equilibrium crystallisation, Tonalite, Upper crustal plutons, Zircon saturation

ASJC Scopus subject areas

Cite this

Crystallisation and zircon saturation of calc-alkaline tonalite from the Adamello Batholith at upper crustal conditions: an experimental study. / Marxer, Felix; Ulmer, Peter.
In: Contributions to Mineralogy and Petrology, Vol. 174, No. 10, 84, 10.2019.

Research output: Contribution to journalArticleResearchpeer review

Download
@article{edcc35a56b5c43f7b758399039a8bbdd,
title = "Crystallisation and zircon saturation of calc-alkaline tonalite from the Adamello Batholith at upper crustal conditions: an experimental study",
abstract = "The understanding of the geochemical and petrophysical evolution of magmas forming intermediate calc-alkaline batholiths at shallow crustal levels critically depends on knowledge of the phase equilibria relations along the liquid line of descent. Here, we present experimental results for a tonalitic system at a pressure of 200 MPa and under water-saturated conditions. Melting experiments were performed at temperatures between 700 and 1000 °C in externally heated HCM pressure vessels, with oxygen fugacity controlled close to the Ni–NiO buffer equilibrium (NNO) employing an argon–methane mixture as pressure medium and Co–Pd redox sensors to verify fO 2 conditions. Natural rock powder of a medium-K tonalite from the Adamello Batholith in Northern Italy served as experimental starting material. Based on compositional data of stable phases in the run products and images of entire run charges, mass balance calculations as well as image processing were performed to investigate the evolution of the crystal/melt ratio with respect to temperature. Furthermore, compositional trends of minerals as well as the liquid line of descent of residual melts were obtained. Orthopyroxene, clinopyroxene and plagioclase were identified as near-liquidus phases (below 990 °C). At 900 °C, amphibole joins the solid-phase assemblage at the expense of clinopyroxene, indicating the existence of a peritectic relationship. After an initial near-linear decrease with temperature, residual melt fractions exhibit a plateau of 45–55 vol. % between 750 and 850 °C, followed by a rapid decrease coinciding with quartz saturation at 725 °C. Compositions of residual liquids evolve along a typical calc-alkaline differentiation trend with decreasing temperature (increasing SiO 2 and decreasing TiO 2, Al 2O 3, CaO, MgO and FeO contents) and become peraluminous below 900 °C. Intermediate to acidic rocks from the Adamello follow the experimental liquid line of descent indicating that the observed compositional spread of the natural intermediate composition rock record can be explained by low-pressure magma differentiation and liquid extraction. Experimentally determined zircon saturation levels are at low temperatures distinctly lower compared to existing and often used Zr-saturation models, but fully consistent with observed and modelled Zr-evolution trends from the natural rock record of the Southern Adamello Batholith inferring that zircon saturation in these intermediate to felsic plutonic rocks occurred at 800–830 °C corresponding to a melt fraction of about 50 vol. %.",
keywords = "Adamello, Arc magmatism, Calc-alkaline intrusion, Crystal/melt ratio, Equilibrium crystallisation, Tonalite, Upper crustal plutons, Zircon saturation",
author = "Felix Marxer and Peter Ulmer",
note = "Publisher Copyright: {\textcopyright} 2019, The Author(s).",
year = "2019",
month = oct,
doi = "10.1007/s00410-019-1619-x",
language = "English",
volume = "174",
journal = "Contributions to Mineralogy and Petrology",
issn = "0010-7999",
publisher = "Springer Verlag",
number = "10",

}

Download

TY - JOUR

T1 - Crystallisation and zircon saturation of calc-alkaline tonalite from the Adamello Batholith at upper crustal conditions: an experimental study

AU - Marxer, Felix

AU - Ulmer, Peter

N1 - Publisher Copyright: © 2019, The Author(s).

PY - 2019/10

Y1 - 2019/10

N2 - The understanding of the geochemical and petrophysical evolution of magmas forming intermediate calc-alkaline batholiths at shallow crustal levels critically depends on knowledge of the phase equilibria relations along the liquid line of descent. Here, we present experimental results for a tonalitic system at a pressure of 200 MPa and under water-saturated conditions. Melting experiments were performed at temperatures between 700 and 1000 °C in externally heated HCM pressure vessels, with oxygen fugacity controlled close to the Ni–NiO buffer equilibrium (NNO) employing an argon–methane mixture as pressure medium and Co–Pd redox sensors to verify fO 2 conditions. Natural rock powder of a medium-K tonalite from the Adamello Batholith in Northern Italy served as experimental starting material. Based on compositional data of stable phases in the run products and images of entire run charges, mass balance calculations as well as image processing were performed to investigate the evolution of the crystal/melt ratio with respect to temperature. Furthermore, compositional trends of minerals as well as the liquid line of descent of residual melts were obtained. Orthopyroxene, clinopyroxene and plagioclase were identified as near-liquidus phases (below 990 °C). At 900 °C, amphibole joins the solid-phase assemblage at the expense of clinopyroxene, indicating the existence of a peritectic relationship. After an initial near-linear decrease with temperature, residual melt fractions exhibit a plateau of 45–55 vol. % between 750 and 850 °C, followed by a rapid decrease coinciding with quartz saturation at 725 °C. Compositions of residual liquids evolve along a typical calc-alkaline differentiation trend with decreasing temperature (increasing SiO 2 and decreasing TiO 2, Al 2O 3, CaO, MgO and FeO contents) and become peraluminous below 900 °C. Intermediate to acidic rocks from the Adamello follow the experimental liquid line of descent indicating that the observed compositional spread of the natural intermediate composition rock record can be explained by low-pressure magma differentiation and liquid extraction. Experimentally determined zircon saturation levels are at low temperatures distinctly lower compared to existing and often used Zr-saturation models, but fully consistent with observed and modelled Zr-evolution trends from the natural rock record of the Southern Adamello Batholith inferring that zircon saturation in these intermediate to felsic plutonic rocks occurred at 800–830 °C corresponding to a melt fraction of about 50 vol. %.

AB - The understanding of the geochemical and petrophysical evolution of magmas forming intermediate calc-alkaline batholiths at shallow crustal levels critically depends on knowledge of the phase equilibria relations along the liquid line of descent. Here, we present experimental results for a tonalitic system at a pressure of 200 MPa and under water-saturated conditions. Melting experiments were performed at temperatures between 700 and 1000 °C in externally heated HCM pressure vessels, with oxygen fugacity controlled close to the Ni–NiO buffer equilibrium (NNO) employing an argon–methane mixture as pressure medium and Co–Pd redox sensors to verify fO 2 conditions. Natural rock powder of a medium-K tonalite from the Adamello Batholith in Northern Italy served as experimental starting material. Based on compositional data of stable phases in the run products and images of entire run charges, mass balance calculations as well as image processing were performed to investigate the evolution of the crystal/melt ratio with respect to temperature. Furthermore, compositional trends of minerals as well as the liquid line of descent of residual melts were obtained. Orthopyroxene, clinopyroxene and plagioclase were identified as near-liquidus phases (below 990 °C). At 900 °C, amphibole joins the solid-phase assemblage at the expense of clinopyroxene, indicating the existence of a peritectic relationship. After an initial near-linear decrease with temperature, residual melt fractions exhibit a plateau of 45–55 vol. % between 750 and 850 °C, followed by a rapid decrease coinciding with quartz saturation at 725 °C. Compositions of residual liquids evolve along a typical calc-alkaline differentiation trend with decreasing temperature (increasing SiO 2 and decreasing TiO 2, Al 2O 3, CaO, MgO and FeO contents) and become peraluminous below 900 °C. Intermediate to acidic rocks from the Adamello follow the experimental liquid line of descent indicating that the observed compositional spread of the natural intermediate composition rock record can be explained by low-pressure magma differentiation and liquid extraction. Experimentally determined zircon saturation levels are at low temperatures distinctly lower compared to existing and often used Zr-saturation models, but fully consistent with observed and modelled Zr-evolution trends from the natural rock record of the Southern Adamello Batholith inferring that zircon saturation in these intermediate to felsic plutonic rocks occurred at 800–830 °C corresponding to a melt fraction of about 50 vol. %.

KW - Adamello

KW - Arc magmatism

KW - Calc-alkaline intrusion

KW - Crystal/melt ratio

KW - Equilibrium crystallisation

KW - Tonalite

KW - Upper crustal plutons

KW - Zircon saturation

UR - http://www.scopus.com/inward/record.url?scp=85071575388&partnerID=8YFLogxK

U2 - 10.1007/s00410-019-1619-x

DO - 10.1007/s00410-019-1619-x

M3 - Article

VL - 174

JO - Contributions to Mineralogy and Petrology

JF - Contributions to Mineralogy and Petrology

SN - 0010-7999

IS - 10

M1 - 84

ER -

By the same author(s)