Details
Original language | English |
---|---|
Article number | 1325964 |
Journal | International Journal of Agronomy |
Volume | 2021 |
Publication status | Published - 2021 |
Abstract
Cassava is a staple food and a major source of income for many smallholder farmers. However, its yields are less than 6 t ha-1 compared to a potential yield of 20-25 t ha-1 in Zambia. Understanding cropping practices and constraints in cassava production systems is imperative for sustainable intensification. Therefore, a survey of 40 households each with three fields of cassava at 12, 24, and 36 months after planting (MAP) was conducted. Analyzed soil data, leaf area index (LAI), intercepted photosynthetically active radiation, and management practices from 120 fields were collected and subjected to descriptive statistics. To explain yield differences within the same cassava growth stage group, the data were grouped into low- and high-yield categories using the median, before applying a nonparametric test for one independent sample. Stepwise regressions were performed on each growth stage and the whole dataset to determine factors affecting tuber yield. Cassava intercropping and monocropping systems were the main cropping systems for the 12 and 24-36 MAP, respectively. Cassava yields declined by 209 and 633 kg ha-1 at 12 and 36 MAP due to soil nutrient depletion for each year of cultivation until field abandonment at 8-9 years. Fresh cassava yields ranged from 3.51-8.51, 13.52-25.84, and 16.92-30.98 t ha-1 at 12, 24, and 36 MAP, respectively. For every one unit increment in exchangeable K (cmol (+)/kg soil), cassava yield increased by 435, 268, and 406 kg ha-1 at 12, 24, and 36 MAP, respectively. One unit increment of magnesium (cmol (+)/kg soil) gave the highest yield increase of 525 kg ha-1 at 24 MAP. The low levels of soil organic carbon explained the deficient nitrogen in cassava fields, which limits the LAI growth and consequently reduced intercepted radiation and low yields. The effect of exchangeable K on growth was limited by the moderate availability of Mg and low N, thus the need for balanced fertilizer regimes.
ASJC Scopus subject areas
- Agricultural and Biological Sciences(all)
- Agronomy and Crop Science
Sustainable Development Goals
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: International Journal of Agronomy, Vol. 2021, 1325964, 2021.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Cropping Practices and Effects on Soil Nutrient Adequacy Levels and Cassava Yield of Smallholder Farmers in Northern Zambia
AU - Kaluba, Peter
AU - Mwamba, Sydney
AU - Moualeu-Ngangue, Dany Pascal
AU - Chiona, Martin
AU - Munyinda, Kalaluka
AU - Winter, Etti
AU - Stützel, Hartmut
AU - Chishala, Benson H.
N1 - Gratitude goes to the Federal Government of Germany, Ministry of Agriculture and Food, and the University of Zambia for financial support. Lastly, the authors are grateful to the Zambian Government through the Ministry of Agriculture in Nchelenge District and the people of Mantapala for assistance during the data collection. This research was supported by the Federal Office for Agriculture and Food (BLE), International Cooperation and Global Food Security 323, Germany (grant no. 1st of January, 2017) and the University of Zambia.
PY - 2021
Y1 - 2021
N2 - Cassava is a staple food and a major source of income for many smallholder farmers. However, its yields are less than 6 t ha-1 compared to a potential yield of 20-25 t ha-1 in Zambia. Understanding cropping practices and constraints in cassava production systems is imperative for sustainable intensification. Therefore, a survey of 40 households each with three fields of cassava at 12, 24, and 36 months after planting (MAP) was conducted. Analyzed soil data, leaf area index (LAI), intercepted photosynthetically active radiation, and management practices from 120 fields were collected and subjected to descriptive statistics. To explain yield differences within the same cassava growth stage group, the data were grouped into low- and high-yield categories using the median, before applying a nonparametric test for one independent sample. Stepwise regressions were performed on each growth stage and the whole dataset to determine factors affecting tuber yield. Cassava intercropping and monocropping systems were the main cropping systems for the 12 and 24-36 MAP, respectively. Cassava yields declined by 209 and 633 kg ha-1 at 12 and 36 MAP due to soil nutrient depletion for each year of cultivation until field abandonment at 8-9 years. Fresh cassava yields ranged from 3.51-8.51, 13.52-25.84, and 16.92-30.98 t ha-1 at 12, 24, and 36 MAP, respectively. For every one unit increment in exchangeable K (cmol (+)/kg soil), cassava yield increased by 435, 268, and 406 kg ha-1 at 12, 24, and 36 MAP, respectively. One unit increment of magnesium (cmol (+)/kg soil) gave the highest yield increase of 525 kg ha-1 at 24 MAP. The low levels of soil organic carbon explained the deficient nitrogen in cassava fields, which limits the LAI growth and consequently reduced intercepted radiation and low yields. The effect of exchangeable K on growth was limited by the moderate availability of Mg and low N, thus the need for balanced fertilizer regimes.
AB - Cassava is a staple food and a major source of income for many smallholder farmers. However, its yields are less than 6 t ha-1 compared to a potential yield of 20-25 t ha-1 in Zambia. Understanding cropping practices and constraints in cassava production systems is imperative for sustainable intensification. Therefore, a survey of 40 households each with three fields of cassava at 12, 24, and 36 months after planting (MAP) was conducted. Analyzed soil data, leaf area index (LAI), intercepted photosynthetically active radiation, and management practices from 120 fields were collected and subjected to descriptive statistics. To explain yield differences within the same cassava growth stage group, the data were grouped into low- and high-yield categories using the median, before applying a nonparametric test for one independent sample. Stepwise regressions were performed on each growth stage and the whole dataset to determine factors affecting tuber yield. Cassava intercropping and monocropping systems were the main cropping systems for the 12 and 24-36 MAP, respectively. Cassava yields declined by 209 and 633 kg ha-1 at 12 and 36 MAP due to soil nutrient depletion for each year of cultivation until field abandonment at 8-9 years. Fresh cassava yields ranged from 3.51-8.51, 13.52-25.84, and 16.92-30.98 t ha-1 at 12, 24, and 36 MAP, respectively. For every one unit increment in exchangeable K (cmol (+)/kg soil), cassava yield increased by 435, 268, and 406 kg ha-1 at 12, 24, and 36 MAP, respectively. One unit increment of magnesium (cmol (+)/kg soil) gave the highest yield increase of 525 kg ha-1 at 24 MAP. The low levels of soil organic carbon explained the deficient nitrogen in cassava fields, which limits the LAI growth and consequently reduced intercepted radiation and low yields. The effect of exchangeable K on growth was limited by the moderate availability of Mg and low N, thus the need for balanced fertilizer regimes.
UR - http://www.scopus.com/inward/record.url?scp=85114108493&partnerID=8YFLogxK
U2 - 10.1155/2021/1325964
DO - 10.1155/2021/1325964
M3 - Article
AN - SCOPUS:85114108493
VL - 2021
JO - International Journal of Agronomy
JF - International Journal of Agronomy
SN - 1687-8159
M1 - 1325964
ER -