Details
Original language | English |
---|---|
Pages (from-to) | 383-407 |
Number of pages | 25 |
Journal | Mathematical Proceedings of the Cambridge Philosophical Society |
Volume | 156 |
Issue number | 3 |
Publication status | Published - May 2014 |
Externally published | Yes |
Abstract
We prove Manin's conjecture for four singular quartic del Pezzo surfaces over imaginary quadratic number fields, using the universal torsor method.
ASJC Scopus subject areas
- Mathematics(all)
- General Mathematics
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Mathematical Proceedings of the Cambridge Philosophical Society, Vol. 156, No. 3, 05.2014, p. 383-407.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Counting imaginary quadratic points via universal torsors, II
AU - Derenthal, Ulrich
AU - Frei, Christopher
N1 - Funding information: Supported by grant DE 1646/2-1 of the Deutsche Forschungsgemeinschaft and by the Hausdorff Research Institute for Mathematics in Bonn which he would like to thank for the hospitality. Partially supported by a research fellowship of the Alexander von Humboldt Foundation.
PY - 2014/5
Y1 - 2014/5
N2 - We prove Manin's conjecture for four singular quartic del Pezzo surfaces over imaginary quadratic number fields, using the universal torsor method.
AB - We prove Manin's conjecture for four singular quartic del Pezzo surfaces over imaginary quadratic number fields, using the universal torsor method.
UR - http://www.scopus.com/inward/record.url?scp=84897006806&partnerID=8YFLogxK
U2 - 10.1017/S0305004113000728
DO - 10.1017/S0305004113000728
M3 - Article
AN - SCOPUS:84897006806
VL - 156
SP - 383
EP - 407
JO - Mathematical Proceedings of the Cambridge Philosophical Society
JF - Mathematical Proceedings of the Cambridge Philosophical Society
SN - 0305-0041
IS - 3
ER -