Details
Original language | English |
---|---|
Article number | 022301 |
Journal | Journal of Engineering for Gas Turbines and Power |
Volume | 140 |
Issue number | 2 |
Publication status | Published - 3 Oct 2017 |
Abstract
The measured performance maps of turbochargers (TCs), which are commonly used for the matching process with a combustion engine, are influenced by heat transfer and friction phenomena. Internal heat transfer from the hot turbine side to the colder compressor side leads to an apparently lower compressor efficiency at low to midspeeds and is not comparable to the compressor efficiency measured under adiabatic conditions. The product of the isentropic turbine efficiency and the mechanical efficiency is typically applied to characterize the turbine efficiency and results from the power balance of the turbocharger. This so-called thermomechanical turbine efficiency is strongly correlated with the compressor efficiency obtained from measured data. Based on a previously developed one-dimensional (1D) heat transfer model, nondimensional analysis was carried out and a generally valid heat transfer model for the compressor side of different TCs was developed. From measurements and ramp-up simulations of turbocharger friction power, an analytical friction power model was developed to correct the thermomechanical turbine efficiency from friction impact. The developed heat transfer and friction model demonstrates the capability to properly predict the adiabatic (aerodynamic) compressor and turbine performance from measurement data obtained at a steady-flow hot gas test bench.
ASJC Scopus subject areas
- Energy(all)
- Nuclear Energy and Engineering
- Energy(all)
- Fuel Technology
- Engineering(all)
- Aerospace Engineering
- Energy(all)
- Energy Engineering and Power Technology
- Engineering(all)
- Mechanical Engineering
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Journal of Engineering for Gas Turbines and Power, Vol. 140, No. 2, 022301, 03.10.2017.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Correcting Turbocharger Performance Measurements for Heat Transfer and Friction
AU - Schinnerl, Mario
AU - Ehrhard, Jan
AU - Bogner, Mathias
AU - Seume, Joerg
PY - 2017/10/3
Y1 - 2017/10/3
N2 - The measured performance maps of turbochargers (TCs), which are commonly used for the matching process with a combustion engine, are influenced by heat transfer and friction phenomena. Internal heat transfer from the hot turbine side to the colder compressor side leads to an apparently lower compressor efficiency at low to midspeeds and is not comparable to the compressor efficiency measured under adiabatic conditions. The product of the isentropic turbine efficiency and the mechanical efficiency is typically applied to characterize the turbine efficiency and results from the power balance of the turbocharger. This so-called thermomechanical turbine efficiency is strongly correlated with the compressor efficiency obtained from measured data. Based on a previously developed one-dimensional (1D) heat transfer model, nondimensional analysis was carried out and a generally valid heat transfer model for the compressor side of different TCs was developed. From measurements and ramp-up simulations of turbocharger friction power, an analytical friction power model was developed to correct the thermomechanical turbine efficiency from friction impact. The developed heat transfer and friction model demonstrates the capability to properly predict the adiabatic (aerodynamic) compressor and turbine performance from measurement data obtained at a steady-flow hot gas test bench.
AB - The measured performance maps of turbochargers (TCs), which are commonly used for the matching process with a combustion engine, are influenced by heat transfer and friction phenomena. Internal heat transfer from the hot turbine side to the colder compressor side leads to an apparently lower compressor efficiency at low to midspeeds and is not comparable to the compressor efficiency measured under adiabatic conditions. The product of the isentropic turbine efficiency and the mechanical efficiency is typically applied to characterize the turbine efficiency and results from the power balance of the turbocharger. This so-called thermomechanical turbine efficiency is strongly correlated with the compressor efficiency obtained from measured data. Based on a previously developed one-dimensional (1D) heat transfer model, nondimensional analysis was carried out and a generally valid heat transfer model for the compressor side of different TCs was developed. From measurements and ramp-up simulations of turbocharger friction power, an analytical friction power model was developed to correct the thermomechanical turbine efficiency from friction impact. The developed heat transfer and friction model demonstrates the capability to properly predict the adiabatic (aerodynamic) compressor and turbine performance from measurement data obtained at a steady-flow hot gas test bench.
UR - http://www.scopus.com/inward/record.url?scp=85030650117&partnerID=8YFLogxK
U2 - 10.1115/1.4037586
DO - 10.1115/1.4037586
M3 - Article
AN - SCOPUS:85030650117
VL - 140
JO - Journal of Engineering for Gas Turbines and Power
JF - Journal of Engineering for Gas Turbines and Power
SN - 0742-4795
IS - 2
M1 - 022301
ER -