Details
Translated title of the contribution | Construction of spectral triples starting from Fredholm modules |
---|---|
Original language | French |
Pages (from-to) | 1195-1199 |
Number of pages | 5 |
Journal | Comptes Rendus Mathematique (Online) |
Volume | 326 |
Issue number | 10 |
Publication status | Published - May 1998 |
Externally published | Yes |
Abstract
Let (A, H, F) be a p-summable Fredholm module where the algebra A = ℂΓ is generated by a discrete group of unitaries in L(H), which is of polynomial growth r. Then we construct a spectral triple (A, H, D) with F = sign D which is q-summable for each q > p + r + 1. In case (A, H, F) is (p, ∞)-summable we obtain (8, ∞)-summability of (A, H, D) for each q > p + r + 1.
ASJC Scopus subject areas
- Mathematics(all)
- General Mathematics
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Comptes Rendus Mathematique (Online), Vol. 326, No. 10, 05.1998, p. 1195-1199.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Construction de triplets spectraux à partir de modules de Fredholm
AU - Schrohe, Elmar
AU - Walze, Markus
AU - Warzecha, Jan Martin
N1 - Copyright: Copyright 2018 Elsevier B.V., All rights reserved.
PY - 1998/5
Y1 - 1998/5
N2 - Let (A, H, F) be a p-summable Fredholm module where the algebra A = ℂΓ is generated by a discrete group of unitaries in L(H), which is of polynomial growth r. Then we construct a spectral triple (A, H, D) with F = sign D which is q-summable for each q > p + r + 1. In case (A, H, F) is (p, ∞)-summable we obtain (8, ∞)-summability of (A, H, D) for each q > p + r + 1.
AB - Let (A, H, F) be a p-summable Fredholm module where the algebra A = ℂΓ is generated by a discrete group of unitaries in L(H), which is of polynomial growth r. Then we construct a spectral triple (A, H, D) with F = sign D which is q-summable for each q > p + r + 1. In case (A, H, F) is (p, ∞)-summable we obtain (8, ∞)-summability of (A, H, D) for each q > p + r + 1.
UR - http://www.scopus.com/inward/record.url?scp=0032066970&partnerID=8YFLogxK
U2 - 10.1016/S0764-4442(98)80226-7
DO - 10.1016/S0764-4442(98)80226-7
M3 - Article
AN - SCOPUS:0032066970
VL - 326
SP - 1195
EP - 1199
JO - Comptes Rendus Mathematique (Online)
JF - Comptes Rendus Mathematique (Online)
SN - 1631-073X
IS - 10
ER -