Details
Original language | English |
---|---|
Article number | L19 |
Journal | Astrophysical Journal Letters |
Volume | 929 |
Issue number | 2 |
Publication status | Published - 19 Apr 2022 |
Abstract
Continuous gravitational waves are nearly monochromatic signals emitted by asymmetries in rotating neutron stars. These signals have not yet been detected. Deep all-sky searches for continuous gravitational waves from isolated neutron stars require significant computational expense. Deep searches for neutron stars in binary systems are even more expensive, but these targets are potentially more promising emitters, especially in the hundreds of Hertz region, where ground-based gravitational-wave detectors are most sensitive. We present here an all-sky search for continuous signals with frequency between 300 and 500 Hz, from neutron stars in binary systems with orbital periods between 15 and 60 days and projected semimajor axes between 10 and 40 lt-s. This is the only binary search on Advanced LIGO data that probes this frequency range. Compared to previous results, our search is over an order of magnitude more sensitive. We do not detect any signals, but our results exclude plausible and unexplored neutron star configurations, for example, neutron stars with relative deformations greater than 3 × 10-6 within 1 kpc from Earth and r-mode emission at the level of α ∼a few 10-4 within the same distance.
ASJC Scopus subject areas
- Physics and Astronomy(all)
- Astronomy and Astrophysics
- Earth and Planetary Sciences(all)
- Space and Planetary Science
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Astrophysical Journal Letters, Vol. 929, No. 2, L19, 19.04.2022.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Constraints on r-modes and Mountains on Millisecond Neutron Stars in Binary Systems
AU - Covas, P. B.
AU - Papa, M. A.
AU - Prix, R.
AU - Owen, B. J.
N1 - Funding Information: We thank Benjamin Steltner for the application of the gating method to the analyzed data set, and Nils Andersson and Fabian Gittins for helpful comments and for the data used to produce Figure . This work has utilized the ATLAS cluster computing at MPI for Gravitational Physics Hannover. B.J.O.’s research for this work was supported by NSF grant No. PHY-1912625. Funding Information: This research has made use of data or software obtained from the Gravitational Wave Open Science Center ( gw-openscience.org ), a service of LIGO Laboratory, the LIGO Scientific Collaboration, the Virgo Collaboration, and KAGRA (Abbott et al. ). LIGO Laboratory and Advanced LIGO are funded by the United States National Science Foundation (NSF) as well as the Science and Technology Facilities Council (STFC) of the United Kingdom, the Max-Planck-Society (MPS), and the State of Niedersachsen/Germany for support of the construction of Advanced LIGO and construction and operation of the GEO600 detector. Additional support for Advanced LIGO was provided by the Australian Research Council. Virgo is funded, through the European Gravitational Observatory (EGO), by the French Centre National de Recherche Scientifique (CNRS), the Italian Istituto Nazionale di Fisica Nucleare (INFN) and the Dutch Nikhef, with contributions by institutions from Belgium, Germany, Greece, Hungary, Ireland, Japan, Monaco, Poland, Portugal, Spain. The construction and operation of KAGRA are funded by Ministry of Education, Culture, Sports, Science and Technology (MEXT), and Japan Society for the Promotion of Science (JSPS), National Research Foundation (NRF) and Ministry of Science and ICT (MSIT) in Korea, Academia Sinica (AS) and the Ministry of Science and Technology (MoST) in Taiwan.
PY - 2022/4/19
Y1 - 2022/4/19
N2 - Continuous gravitational waves are nearly monochromatic signals emitted by asymmetries in rotating neutron stars. These signals have not yet been detected. Deep all-sky searches for continuous gravitational waves from isolated neutron stars require significant computational expense. Deep searches for neutron stars in binary systems are even more expensive, but these targets are potentially more promising emitters, especially in the hundreds of Hertz region, where ground-based gravitational-wave detectors are most sensitive. We present here an all-sky search for continuous signals with frequency between 300 and 500 Hz, from neutron stars in binary systems with orbital periods between 15 and 60 days and projected semimajor axes between 10 and 40 lt-s. This is the only binary search on Advanced LIGO data that probes this frequency range. Compared to previous results, our search is over an order of magnitude more sensitive. We do not detect any signals, but our results exclude plausible and unexplored neutron star configurations, for example, neutron stars with relative deformations greater than 3 × 10-6 within 1 kpc from Earth and r-mode emission at the level of α ∼a few 10-4 within the same distance.
AB - Continuous gravitational waves are nearly monochromatic signals emitted by asymmetries in rotating neutron stars. These signals have not yet been detected. Deep all-sky searches for continuous gravitational waves from isolated neutron stars require significant computational expense. Deep searches for neutron stars in binary systems are even more expensive, but these targets are potentially more promising emitters, especially in the hundreds of Hertz region, where ground-based gravitational-wave detectors are most sensitive. We present here an all-sky search for continuous signals with frequency between 300 and 500 Hz, from neutron stars in binary systems with orbital periods between 15 and 60 days and projected semimajor axes between 10 and 40 lt-s. This is the only binary search on Advanced LIGO data that probes this frequency range. Compared to previous results, our search is over an order of magnitude more sensitive. We do not detect any signals, but our results exclude plausible and unexplored neutron star configurations, for example, neutron stars with relative deformations greater than 3 × 10-6 within 1 kpc from Earth and r-mode emission at the level of α ∼a few 10-4 within the same distance.
UR - http://www.scopus.com/inward/record.url?scp=85129684383&partnerID=8YFLogxK
U2 - 10.3847/2041-8213/ac62d7
DO - 10.3847/2041-8213/ac62d7
M3 - Article
AN - SCOPUS:85129684383
VL - 929
JO - Astrophysical Journal Letters
JF - Astrophysical Journal Letters
SN - 2041-8205
IS - 2
M1 - L19
ER -