Details
Original language | English |
---|---|
Article number | 235015 |
Journal | Classical and quantum gravity |
Volume | 33 |
Issue number | 23 |
Publication status | Published - 8 Dec 2016 |
Abstract
LISA Pathfinder satellite was launched on 3 December 2015 toward the Sun-Earth first Lagrangian point (L1) where the LISA Technology Package (LTP), which is the main science payload, will be tested. LTP achieves measurements of differential acceleration of free-falling test masses (TMs) with sensitivity below 3 × 10-14 m s-2 Hz-1/2 within the 1-30 mHz frequency band in one-dimension. The spacecraft itself is responsible for the dominant differential gravitational field acting on the two TMs. Such a force interaction could contribute a significant amount of noise and thus threaten the achievement of the targeted free-fall level. We prevented this by balancing the gravitational forces to the sub nm s-2 level, guided by a protocol based on measurements of the position and the mass of all parts that constitute the satellite, via finite element calculation tool estimates. In this paper, we will introduce the gravitational balance requirements and design, and then discuss our predictions for the balance that will be achieved in flight.
Keywords
- differential accelerometer, LISA, LISA Pathfinder, self-gravity
ASJC Scopus subject areas
- Physics and Astronomy(all)
- Physics and Astronomy (miscellaneous)
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Classical and quantum gravity, Vol. 33, No. 23, 235015, 08.12.2016.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Constraints on LISA Pathfinder's self-gravity
T2 - design requirements, estimates and testing procedures
AU - Armano, M.
AU - Audley, H.
AU - Auger, G.
AU - Baird, J.
AU - Binetruy, P.
AU - Born, M.
AU - Bortoluzzi, D.
AU - Brandt, N.
AU - Bursi, A.
AU - Caleno, M.
AU - Cavalleri, A.
AU - Cesarini, A.
AU - Cruise, M.
AU - Danzmann, K.
AU - Silva, M. De Deus
AU - Desiderio, D.
AU - Piersanti, E.
AU - Diepholz, I.
AU - Dolesi, R.
AU - Dunbar, N.
AU - Ferraioli, L.
AU - Ferroni, V.
AU - Fitzsimons, E.
AU - Flatscher, R.
AU - Freschi, M.
AU - Gallegos, J.
AU - Marirrodriga, C. García
AU - Gerndt, R.
AU - Gesa, L.
AU - Gibert, F.
AU - Giardini, D.
AU - Giusteri, R.
AU - Grimani, C.
AU - Grzymisch, J.
AU - Harrison, I.
AU - Heinzel, G.
AU - Hewitson, M.
AU - Hollington, D.
AU - Hueller, M.
AU - Huesler, J.
AU - Inchauspé, H.
AU - Jennrich, O.
AU - Jetzer, P.
AU - Johlander, B.
AU - Karnesis, N.
AU - Kaune, B.
AU - Korsakova, N.
AU - Killow, C.
AU - Lloro, I.
AU - Liu, L.
AU - López-Zaragoza, J. P.
AU - Maarschalkerweerd, R.
AU - Madden, S.
AU - Mance, D.
AU - Martín, V.
AU - Martin-Polo, L.
AU - Martino, J.
AU - Martin-Porqueras, F.
AU - Mateos, I.
AU - McNamara, P. W.
AU - Mendes, J.
AU - Mendes, L.
AU - Moroni, A.
AU - Nofrarias, M.
AU - Paczkowski, S.
AU - Perreur-Lloyd, M.
AU - Petiteau, A.
AU - Pivato, P.
AU - Plagnol, E.
AU - Prat, P.
AU - Ragnit, U.
AU - Ramos-Castro, J.
AU - Reiche, J.
AU - Perez, J. A.Romera
AU - Robertson, D.
AU - Rozemeijer, H.
AU - Rivas, F.
AU - Russano, G.
AU - Sarra, P.
AU - Schleicher, A.
AU - Slutsky, J.
AU - Sopuerta, C. F.
AU - Sumner, T.
AU - Texier, D.
AU - Thorpe, J. I.
AU - Tomlinson, R.
AU - Trenkel, C.
AU - Vetrugno, D.
AU - Vitale, S.
AU - Wanner, G.
AU - Ward, H.
AU - Warren, C.
AU - Wass, P. J.
AU - Wealthy, D.
AU - Weber, W. J.
AU - Wittchen, A.
AU - Zanoni, C.
AU - Ziegler, T.
AU - Zweifel, P.
N1 - Funding Information: The French contribution has been supported by CNES (Accord Specific de projet CNES 1316634/CNRS 103747), the CNRS, the Observatoire de Paris and the University Paris-Diderot. EP and HI would also like to acknowledge the financial support of the UnivEarthS Labex program at Sorbonne Paris Cit (ANR-10-LABX-0023 and ANR-11-IDEX-0005-02). The Albert-Einstein-Institut acknowledges the support of the German Space Agency, DLR. The work is supported by the Federal Ministry for Economic Affairs and Energy based on a resolution of the German Bundestag (FKZ 50OQ0501 and FKZ 50OQ1601).
PY - 2016/12/8
Y1 - 2016/12/8
N2 - LISA Pathfinder satellite was launched on 3 December 2015 toward the Sun-Earth first Lagrangian point (L1) where the LISA Technology Package (LTP), which is the main science payload, will be tested. LTP achieves measurements of differential acceleration of free-falling test masses (TMs) with sensitivity below 3 × 10-14 m s-2 Hz-1/2 within the 1-30 mHz frequency band in one-dimension. The spacecraft itself is responsible for the dominant differential gravitational field acting on the two TMs. Such a force interaction could contribute a significant amount of noise and thus threaten the achievement of the targeted free-fall level. We prevented this by balancing the gravitational forces to the sub nm s-2 level, guided by a protocol based on measurements of the position and the mass of all parts that constitute the satellite, via finite element calculation tool estimates. In this paper, we will introduce the gravitational balance requirements and design, and then discuss our predictions for the balance that will be achieved in flight.
AB - LISA Pathfinder satellite was launched on 3 December 2015 toward the Sun-Earth first Lagrangian point (L1) where the LISA Technology Package (LTP), which is the main science payload, will be tested. LTP achieves measurements of differential acceleration of free-falling test masses (TMs) with sensitivity below 3 × 10-14 m s-2 Hz-1/2 within the 1-30 mHz frequency band in one-dimension. The spacecraft itself is responsible for the dominant differential gravitational field acting on the two TMs. Such a force interaction could contribute a significant amount of noise and thus threaten the achievement of the targeted free-fall level. We prevented this by balancing the gravitational forces to the sub nm s-2 level, guided by a protocol based on measurements of the position and the mass of all parts that constitute the satellite, via finite element calculation tool estimates. In this paper, we will introduce the gravitational balance requirements and design, and then discuss our predictions for the balance that will be achieved in flight.
KW - differential accelerometer
KW - LISA
KW - LISA Pathfinder
KW - self-gravity
UR - http://www.scopus.com/inward/record.url?scp=84995676856&partnerID=8YFLogxK
U2 - 10.1088/0264-9381/33/23/235015
DO - 10.1088/0264-9381/33/23/235015
M3 - Article
AN - SCOPUS:84995676856
VL - 33
JO - Classical and quantum gravity
JF - Classical and quantum gravity
SN - 0264-9381
IS - 23
M1 - 235015
ER -