Details
Original language | English |
---|---|
Article number | 241102 |
Number of pages | 20 |
Journal | Physical Review Letters |
Volume | 126 |
Issue number | 24 |
Early online date | 16 Jun 2021 |
Publication status | Published - 18 Jun 2021 |
Abstract
We search for gravitational-wave signals produced by cosmic strings in the Advanced LIGO and Virgo full O3 dataset. Search results are presented for gravitational waves produced by cosmic string loop features such as cusps, kinks, and, for the first time, kink-kink collisions. A template-based search for short-duration transient signals does not yield a detection. We also use the stochastic gravitational-wave background energy density upper limits derived from the O3 data to constrain the cosmic string tension Gμ as a function of the number of kinks, or the number of cusps, for two cosmic string loop distribution models. Additionally, we develop and test a third model that interpolates between these two models. Our results improve upon the previous LIGO-Virgo constraints on Gμ by 1 to 2 orders of magnitude depending on the model that is tested. In particular, for the one-loop distribution model, we set the most competitive constraints to date: Gμ≲4×10-15. In the case of cosmic strings formed at the end of inflation in the context of grand unified theories, these results challenge simple inflationary models.
Keywords
- gr-qc, astro-ph.CO, hep-th
ASJC Scopus subject areas
- Physics and Astronomy(all)
- General Physics and Astronomy
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Physical Review Letters, Vol. 126, No. 24, 241102, 18.06.2021.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Constraints on Cosmic Strings Using Data from the Third Advanced LIGO–Virgo Observing Run
AU - The LIGO Scientific Collaboration
AU - The Virgo Collaboration
AU - the KAGRA Collaboration
AU - Abbott, R.
AU - Abbott, T. D.
AU - Abraham, S.
AU - Acernese, F.
AU - Ackley, K.
AU - Adams, A.
AU - Adams, C.
AU - Adhikari, R. X.
AU - Adya, V. B.
AU - Affeldt, C.
AU - Agarwal, D.
AU - Agathos, M.
AU - Agatsuma, K.
AU - Aggarwal, N.
AU - Aguiar, O. D.
AU - Aiello, L.
AU - Ain, A.
AU - Ajith, P.
AU - Akutsu, T.
AU - Aleman, K. M.
AU - Allen, G.
AU - Allocca, A.
AU - Altin, P. A.
AU - Amato, A.
AU - Anand, S.
AU - Ananyeva, A.
AU - Anderson, S. B.
AU - Anderson, W. G.
AU - Ando, M.
AU - Angelova, S. V.
AU - Ansoldi, S.
AU - Antelis, J. M.
AU - Antier, S.
AU - Appert, S.
AU - Arai, Koya
AU - Arai, Koji
AU - Arai, Y.
AU - Araki, S.
AU - Araya, A.
AU - Danilishin, S. L.
AU - Danzmann, K.
AU - Heurs, M.
AU - Hreibi, A.
AU - Isleif, K.
AU - Lück, H.
AU - Richardson, L.
AU - Vahlbruch, H.
AU - Wei, L.
AU - Wilken, D.
AU - Willke, B.
AU - Bose, Sukanta
AU - Brown, D. D.
AU - Chen, Amin
AU - Chen, C.
AU - Chen, H. Y.
AU - Chen, Jianqin
AU - Chen, K.
AU - Chen, Xueqin
AU - Chen, Y. B.
AU - Chen, Y. R.
AU - Chen, Z.
AU - Cheng, Hai-Ping
AU - Coudhary, Raul Kumar
AU - Hansen, Hannah
AU - Hennig, J.
AU - Hennig, M. H.
AU - Hübner, M. T.
AU - Lang, R. N.
AU - Lee, H. K.
AU - Lee, H. M.
AU - Lee, H. W.
AU - Lee, J.
AU - Lee, K.
AU - Lee, R.
AU - Li, X.
AU - Rose, C. A.
AU - Sanders, J. R.
AU - Schmidt, Patricia
AU - Sun, L.
AU - Wu, D. S.
AU - Wu, H.
AU - Yamamoto, Kohei
AU - Zhang, H.
AU - Zhang, L.
AU - Zhang, R.
AU - Zhu, X. J.
AU - Affeldt, Christoph
AU - Aufmuth, Peter
AU - Bergamin, Fabio
AU - Bisht, A.
AU - Bode, Nina
AU - Booker, P.
AU - Brinkmann, M.
AU - Gohlke, N.
AU - Heinze, J.
AU - Hochheim, S.
AU - Junker, J.
AU - Kastaun, W.
AU - Kirchhoff, R.
AU - Koch, P.
AU - Koper, N.
AU - Kringel, V.
AU - Krishnendu, N. V.
AU - Kuehn, G.
AU - Leavey, S.
AU - Lehmann, J.
AU - Liu, J.
AU - Lough, J. D.
AU - Matuisheckina, Mariia
AU - Mehmet, M.
AU - Meylahn, F.
AU - Mukund, N.
AU - Nadji, S. L.
AU - Nery, M.
AU - Ohme, F.
AU - Schneewind, M.
AU - Schulte, B. W.
AU - Setyawati, Y.
AU - Venneberg, J.
AU - Weinert, M.
AU - Wellmann, F.
AU - Weßels, Peter
AU - Winkler, W.
AU - Woehler, J.
AU - von Wrangel, J.
AU - Matiushechkina, Mariia
N1 - Publisher Copyright: © 2021 us. American Physical Society.
PY - 2021/6/18
Y1 - 2021/6/18
N2 - We search for gravitational-wave signals produced by cosmic strings in the Advanced LIGO and Virgo full O3 dataset. Search results are presented for gravitational waves produced by cosmic string loop features such as cusps, kinks, and, for the first time, kink-kink collisions. A template-based search for short-duration transient signals does not yield a detection. We also use the stochastic gravitational-wave background energy density upper limits derived from the O3 data to constrain the cosmic string tension Gμ as a function of the number of kinks, or the number of cusps, for two cosmic string loop distribution models. Additionally, we develop and test a third model that interpolates between these two models. Our results improve upon the previous LIGO-Virgo constraints on Gμ by 1 to 2 orders of magnitude depending on the model that is tested. In particular, for the one-loop distribution model, we set the most competitive constraints to date: Gμ≲4×10-15. In the case of cosmic strings formed at the end of inflation in the context of grand unified theories, these results challenge simple inflationary models.
AB - We search for gravitational-wave signals produced by cosmic strings in the Advanced LIGO and Virgo full O3 dataset. Search results are presented for gravitational waves produced by cosmic string loop features such as cusps, kinks, and, for the first time, kink-kink collisions. A template-based search for short-duration transient signals does not yield a detection. We also use the stochastic gravitational-wave background energy density upper limits derived from the O3 data to constrain the cosmic string tension Gμ as a function of the number of kinks, or the number of cusps, for two cosmic string loop distribution models. Additionally, we develop and test a third model that interpolates between these two models. Our results improve upon the previous LIGO-Virgo constraints on Gμ by 1 to 2 orders of magnitude depending on the model that is tested. In particular, for the one-loop distribution model, we set the most competitive constraints to date: Gμ≲4×10-15. In the case of cosmic strings formed at the end of inflation in the context of grand unified theories, these results challenge simple inflationary models.
KW - gr-qc
KW - astro-ph.CO
KW - hep-th
UR - http://www.scopus.com/inward/record.url?scp=85108902341&partnerID=8YFLogxK
U2 - 10.1103/PhysRevLett.126.241102
DO - 10.1103/PhysRevLett.126.241102
M3 - Article
VL - 126
JO - Physical Review Letters
JF - Physical Review Letters
SN - 0031-9007
IS - 24
M1 - 241102
ER -