Details
Original language | English |
---|---|
Pages (from-to) | 35-78 |
Number of pages | 44 |
Journal | Numerical algorithms |
Volume | 41 |
Issue number | 1 |
Early online date | 13 Dec 2005 |
Publication status | Published - Jan 2006 |
Abstract
ECT-spline curves for sequences of multiple knots are generated from different local ECT-systems via connection matrices. Under appropriate assumptions there is a basis of the space of ECT-splines consisting of functions having minimal compact supports, normalized to form a nonnegative partition of unity. The basic functions can be defined by generalized divided differences [24]. This definition reduces to the classical one in case of a Schoenberg space. Under suitable assumptions it leads to a recursive method for computing the ECT-B-splines that reduces to the de Boor-Mansion-Cox recursion in case of ordinary polynomial splines and to Lyche's recursion in case of Tchebycheff splines. For sequences of simple knots and connection matrices that are nonsingular, lower triangular and totally positive the spline weights are identified as Neville-Aitken weights of certain generalized interpolation problems. For multiple knots they are limits of Neville-Aitken weights. In many cases the spline weights can be computed easily by recurrence. Our approach covers the case of Bézier-ECT-splines as well. They are defined by different local ECT-systems on knot intervals of a finite partition of a compact interval [a,b] connected at inner knots all of multiplicities zero by full connection matrices A [i] that are nonsingular, lower triangular and totally positive. In case of ordinary polynomials of order n they reduce to the classical Bézier polynomials. We also present a recursive algorithm of de Boor type computing ECT-spline curves pointwise. Examples of polynomial and rational B-splines constructed from given knot sequences and given connection matrices are added. For some of them we give explicit formulas of the spline weights, for others we display the B-splines or the B-spline curves.
Keywords
- De-Boor algorithm, ECT-B-splines, ECT-spline curves, ECT-systems
ASJC Scopus subject areas
- Mathematics(all)
- Applied Mathematics
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Numerical algorithms, Vol. 41, No. 1, 01.2006, p. 35-78.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Computing ECT-B-splines recursively
AU - Mühlbach, Günter W.
AU - Tang, Yuehong
PY - 2006/1
Y1 - 2006/1
N2 - ECT-spline curves for sequences of multiple knots are generated from different local ECT-systems via connection matrices. Under appropriate assumptions there is a basis of the space of ECT-splines consisting of functions having minimal compact supports, normalized to form a nonnegative partition of unity. The basic functions can be defined by generalized divided differences [24]. This definition reduces to the classical one in case of a Schoenberg space. Under suitable assumptions it leads to a recursive method for computing the ECT-B-splines that reduces to the de Boor-Mansion-Cox recursion in case of ordinary polynomial splines and to Lyche's recursion in case of Tchebycheff splines. For sequences of simple knots and connection matrices that are nonsingular, lower triangular and totally positive the spline weights are identified as Neville-Aitken weights of certain generalized interpolation problems. For multiple knots they are limits of Neville-Aitken weights. In many cases the spline weights can be computed easily by recurrence. Our approach covers the case of Bézier-ECT-splines as well. They are defined by different local ECT-systems on knot intervals of a finite partition of a compact interval [a,b] connected at inner knots all of multiplicities zero by full connection matrices A [i] that are nonsingular, lower triangular and totally positive. In case of ordinary polynomials of order n they reduce to the classical Bézier polynomials. We also present a recursive algorithm of de Boor type computing ECT-spline curves pointwise. Examples of polynomial and rational B-splines constructed from given knot sequences and given connection matrices are added. For some of them we give explicit formulas of the spline weights, for others we display the B-splines or the B-spline curves.
AB - ECT-spline curves for sequences of multiple knots are generated from different local ECT-systems via connection matrices. Under appropriate assumptions there is a basis of the space of ECT-splines consisting of functions having minimal compact supports, normalized to form a nonnegative partition of unity. The basic functions can be defined by generalized divided differences [24]. This definition reduces to the classical one in case of a Schoenberg space. Under suitable assumptions it leads to a recursive method for computing the ECT-B-splines that reduces to the de Boor-Mansion-Cox recursion in case of ordinary polynomial splines and to Lyche's recursion in case of Tchebycheff splines. For sequences of simple knots and connection matrices that are nonsingular, lower triangular and totally positive the spline weights are identified as Neville-Aitken weights of certain generalized interpolation problems. For multiple knots they are limits of Neville-Aitken weights. In many cases the spline weights can be computed easily by recurrence. Our approach covers the case of Bézier-ECT-splines as well. They are defined by different local ECT-systems on knot intervals of a finite partition of a compact interval [a,b] connected at inner knots all of multiplicities zero by full connection matrices A [i] that are nonsingular, lower triangular and totally positive. In case of ordinary polynomials of order n they reduce to the classical Bézier polynomials. We also present a recursive algorithm of de Boor type computing ECT-spline curves pointwise. Examples of polynomial and rational B-splines constructed from given knot sequences and given connection matrices are added. For some of them we give explicit formulas of the spline weights, for others we display the B-splines or the B-spline curves.
KW - De-Boor algorithm
KW - ECT-B-splines
KW - ECT-spline curves
KW - ECT-systems
UR - http://www.scopus.com/inward/record.url?scp=30844448580&partnerID=8YFLogxK
U2 - 10.1007/s11075-005-9005-3
DO - 10.1007/s11075-005-9005-3
M3 - Article
AN - SCOPUS:30844448580
VL - 41
SP - 35
EP - 78
JO - Numerical algorithms
JF - Numerical algorithms
SN - 1017-1398
IS - 1
ER -