Details
Original language | English |
---|---|
Title of host publication | Modelling, Simulation and Software Concepts for Scientific-Technological Problems |
Publisher | Springer Verlag |
Pages | 133-167 |
Number of pages | 35 |
ISBN (print) | 9783642204890 |
Publication status | Published - 2011 |
Publication series
Name | Lecture Notes in Applied and Computational Mechanics |
---|---|
Volume | 57 |
ISSN (Print) | 1613-7736 |
Abstract
A series of four PhD projects worked out under the umbrella of the research training group GRK 615 are summarized in this contribution. The first is on the multiscale modeling of the mechanics of an atomic force microscope with special emphasis on the contact problem. At the relevant length scales atomic force interactions have been considered. The total device is modeled in a dimension adaptive manner using beam elements for the cantilever, solid elements for the tip and an atomic interaction approach for the contact problem. The second thesis is a straightforeward continuation of this research be setting up a powerful MD-FE coupling scheme especially for contact problems. Special emphasis has been led on the consistent coupling avoiding ghost forces by introducing dummy atoms and a boundary layer for the atomic domain. A second series is on the treatment of biomechanics of bones. For a better understanding of the biomechanical phenomena a computational multiscale environment has been implemented, where a cortical section with reinforcing osteons is modeled. The osteons itself are treated on a smaller length scale as laminar cross ply structures and the basic anisotropic properties of the layer are homogenized from the basic constituents, i.e. collagen matrix and hydroxyapatite crystals in dependency of the grade of mineralization. Based on a simple strain criterion detected at voids in between the layers of the osteons a closed control circuit has been realized to mimic the aging of bone. A micro-crack theory as basic origin for the cellular stimulation for bone remodeling has been realized in the last thesis. The strain driven evolution of interlaminar micro-cracks is simulated within an adaptively refined finite element framework. For studies on the released material integrity on the bone cells a sophisticated cell model in analogy to self-stabilizing tensegrity structures has been developed. By this model especially the amplification of stresses from the membrane into the nucleus is shown.
ASJC Scopus subject areas
- Engineering(all)
- Mechanical Engineering
- Computer Science(all)
- Computational Theory and Mathematics
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
Modelling, Simulation and Software Concepts for Scientific-Technological Problems. Springer Verlag, 2011. p. 133-167 (Lecture Notes in Applied and Computational Mechanics; Vol. 57).
Research output: Chapter in book/report/conference proceeding › Contribution to book/anthology › Research › peer review
}
TY - CHAP
T1 - Computational techniques for multiscale analysis of materials and interfaces
AU - Nackenhorst, Udo
AU - Kardas, Dieter
AU - Helmich, Tobias
AU - Lenz, Christian
AU - Shan, Wenzhe
PY - 2011
Y1 - 2011
N2 - A series of four PhD projects worked out under the umbrella of the research training group GRK 615 are summarized in this contribution. The first is on the multiscale modeling of the mechanics of an atomic force microscope with special emphasis on the contact problem. At the relevant length scales atomic force interactions have been considered. The total device is modeled in a dimension adaptive manner using beam elements for the cantilever, solid elements for the tip and an atomic interaction approach for the contact problem. The second thesis is a straightforeward continuation of this research be setting up a powerful MD-FE coupling scheme especially for contact problems. Special emphasis has been led on the consistent coupling avoiding ghost forces by introducing dummy atoms and a boundary layer for the atomic domain. A second series is on the treatment of biomechanics of bones. For a better understanding of the biomechanical phenomena a computational multiscale environment has been implemented, where a cortical section with reinforcing osteons is modeled. The osteons itself are treated on a smaller length scale as laminar cross ply structures and the basic anisotropic properties of the layer are homogenized from the basic constituents, i.e. collagen matrix and hydroxyapatite crystals in dependency of the grade of mineralization. Based on a simple strain criterion detected at voids in between the layers of the osteons a closed control circuit has been realized to mimic the aging of bone. A micro-crack theory as basic origin for the cellular stimulation for bone remodeling has been realized in the last thesis. The strain driven evolution of interlaminar micro-cracks is simulated within an adaptively refined finite element framework. For studies on the released material integrity on the bone cells a sophisticated cell model in analogy to self-stabilizing tensegrity structures has been developed. By this model especially the amplification of stresses from the membrane into the nucleus is shown.
AB - A series of four PhD projects worked out under the umbrella of the research training group GRK 615 are summarized in this contribution. The first is on the multiscale modeling of the mechanics of an atomic force microscope with special emphasis on the contact problem. At the relevant length scales atomic force interactions have been considered. The total device is modeled in a dimension adaptive manner using beam elements for the cantilever, solid elements for the tip and an atomic interaction approach for the contact problem. The second thesis is a straightforeward continuation of this research be setting up a powerful MD-FE coupling scheme especially for contact problems. Special emphasis has been led on the consistent coupling avoiding ghost forces by introducing dummy atoms and a boundary layer for the atomic domain. A second series is on the treatment of biomechanics of bones. For a better understanding of the biomechanical phenomena a computational multiscale environment has been implemented, where a cortical section with reinforcing osteons is modeled. The osteons itself are treated on a smaller length scale as laminar cross ply structures and the basic anisotropic properties of the layer are homogenized from the basic constituents, i.e. collagen matrix and hydroxyapatite crystals in dependency of the grade of mineralization. Based on a simple strain criterion detected at voids in between the layers of the osteons a closed control circuit has been realized to mimic the aging of bone. A micro-crack theory as basic origin for the cellular stimulation for bone remodeling has been realized in the last thesis. The strain driven evolution of interlaminar micro-cracks is simulated within an adaptively refined finite element framework. For studies on the released material integrity on the bone cells a sophisticated cell model in analogy to self-stabilizing tensegrity structures has been developed. By this model especially the amplification of stresses from the membrane into the nucleus is shown.
UR - http://www.scopus.com/inward/record.url?scp=79955823531&partnerID=8YFLogxK
U2 - 10.1007/978-3-642-20490-6_5
DO - 10.1007/978-3-642-20490-6_5
M3 - Contribution to book/anthology
AN - SCOPUS:79955823531
SN - 9783642204890
T3 - Lecture Notes in Applied and Computational Mechanics
SP - 133
EP - 167
BT - Modelling, Simulation and Software Concepts for Scientific-Technological Problems
PB - Springer Verlag
ER -