Details
Original language | English |
---|---|
Pages (from-to) | 559-564 |
Number of pages | 6 |
Journal | International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives |
Volume | 40 |
Issue number | 1W5 |
Publication status | E-pub ahead of print - 11 Dec 2015 |
Event | ISPRS International Conference on Sensors and Models in Remote Sensing and Photogrammetry 2015 - Kish Island, Iran, Islamic Republic of Duration: 23 Nov 2015 → 25 Nov 2015 |
Abstract
In the current state-of-the-art, geodetic deformation analysis of natural and artificial objects (e.g. dams, bridges,.) is an ongoing research in both static and kinematic mode and has received considerable interest by researchers and geodetic engineers. In this work, due to increasing the accuracy of geodetic deformation analysis, a terrestrial laser scanner (TLS; here the Zoller+Fröhlich IMAGER 5006) and a high resolution digital camera (Nikon D750) are integrated to complementarily benefit from each other. In order to optimally combine the acquired data of the hybrid sensor system, a highly accurate estimation of the extrinsic calibration parameters between TLS and digital camera is a vital preliminary step. Thus, the calibration of the aforementioned hybrid sensor system can be separated into three single calibrations: calibration of the camera, calibration of the TLS and extrinsic calibration between TLS and digital camera. In this research, we focus on highly accurate estimating extrinsic parameters between fused sensors and target- and targetless (mutual information) based methods are applied. In target-based calibration, different types of observations (image coordinates, TLS measurements and laser tracker measurements for validation) are utilized and variance component estimation is applied to optimally assign adequate weights to the observations. Space resection bundle adjustment based on the collinearity equations is solved using Gauss-Markov and Gauss-Helmert model. Statistical tests are performed to discard outliers and large residuals in the adjustment procedure. At the end, the two aforementioned approaches are compared and advantages and disadvantages of them are investigated and numerical results are presented and discussed.
Keywords
- Bundle adjustment, Digital camera, Extrinsic calibration, Mutual information, Terrestrial laser scanner
ASJC Scopus subject areas
- Computer Science(all)
- Information Systems
- Social Sciences(all)
- Geography, Planning and Development
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, Vol. 40, No. 1W5, 11.12.2015, p. 559-564.
Research output: Contribution to journal › Conference article › Research › peer review
}
TY - JOUR
T1 - Comparison of target-and mutual informaton based calibration of terrestrial laser scanner and digital camera for deformation monitoring
AU - Omidalizarandi, Mohammad
AU - Neumann, Ingo
PY - 2015/12/11
Y1 - 2015/12/11
N2 - In the current state-of-the-art, geodetic deformation analysis of natural and artificial objects (e.g. dams, bridges,.) is an ongoing research in both static and kinematic mode and has received considerable interest by researchers and geodetic engineers. In this work, due to increasing the accuracy of geodetic deformation analysis, a terrestrial laser scanner (TLS; here the Zoller+Fröhlich IMAGER 5006) and a high resolution digital camera (Nikon D750) are integrated to complementarily benefit from each other. In order to optimally combine the acquired data of the hybrid sensor system, a highly accurate estimation of the extrinsic calibration parameters between TLS and digital camera is a vital preliminary step. Thus, the calibration of the aforementioned hybrid sensor system can be separated into three single calibrations: calibration of the camera, calibration of the TLS and extrinsic calibration between TLS and digital camera. In this research, we focus on highly accurate estimating extrinsic parameters between fused sensors and target- and targetless (mutual information) based methods are applied. In target-based calibration, different types of observations (image coordinates, TLS measurements and laser tracker measurements for validation) are utilized and variance component estimation is applied to optimally assign adequate weights to the observations. Space resection bundle adjustment based on the collinearity equations is solved using Gauss-Markov and Gauss-Helmert model. Statistical tests are performed to discard outliers and large residuals in the adjustment procedure. At the end, the two aforementioned approaches are compared and advantages and disadvantages of them are investigated and numerical results are presented and discussed.
AB - In the current state-of-the-art, geodetic deformation analysis of natural and artificial objects (e.g. dams, bridges,.) is an ongoing research in both static and kinematic mode and has received considerable interest by researchers and geodetic engineers. In this work, due to increasing the accuracy of geodetic deformation analysis, a terrestrial laser scanner (TLS; here the Zoller+Fröhlich IMAGER 5006) and a high resolution digital camera (Nikon D750) are integrated to complementarily benefit from each other. In order to optimally combine the acquired data of the hybrid sensor system, a highly accurate estimation of the extrinsic calibration parameters between TLS and digital camera is a vital preliminary step. Thus, the calibration of the aforementioned hybrid sensor system can be separated into three single calibrations: calibration of the camera, calibration of the TLS and extrinsic calibration between TLS and digital camera. In this research, we focus on highly accurate estimating extrinsic parameters between fused sensors and target- and targetless (mutual information) based methods are applied. In target-based calibration, different types of observations (image coordinates, TLS measurements and laser tracker measurements for validation) are utilized and variance component estimation is applied to optimally assign adequate weights to the observations. Space resection bundle adjustment based on the collinearity equations is solved using Gauss-Markov and Gauss-Helmert model. Statistical tests are performed to discard outliers and large residuals in the adjustment procedure. At the end, the two aforementioned approaches are compared and advantages and disadvantages of them are investigated and numerical results are presented and discussed.
KW - Bundle adjustment
KW - Digital camera
KW - Extrinsic calibration
KW - Mutual information
KW - Terrestrial laser scanner
UR - http://www.scopus.com/inward/record.url?scp=84974589121&partnerID=8YFLogxK
U2 - 10.5194/isprsarchives-XL-1-W5-559-2015
DO - 10.5194/isprsarchives-XL-1-W5-559-2015
M3 - Conference article
AN - SCOPUS:84974589121
VL - 40
SP - 559
EP - 564
JO - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives
JF - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives
SN - 1682-1750
IS - 1W5
T2 - ISPRS International Conference on Sensors and Models in Remote Sensing and Photogrammetry 2015
Y2 - 23 November 2015 through 25 November 2015
ER -