Comparative evaluation of acoustic and electric signals of partial discharges

Research output: ThesisDoctoral thesis

Authors

  • Seyed Amir Mahmood Najafi
View graph of relations

Details

Original languageEnglish
QualificationDoctor of Engineering
Awarding Institution
Supervised by
  • Ernst Gockenbach, Supervisor
Date of Award24 Apr 2023
Place of PublicationHannover
Publication statusPublished - 2023

Abstract

Failures of power electric components such as transformers and outages can lead to a huge economical loss in the electric power grid. One of the main parts of a power electric components is the insulation system, namely, insulation oil, impregnated pressboard and paper. Several methods exist for diagnostics of these insulation materials. Partial discharge (PD) measurement known as one of the main non-destructive monitoring systems of the insulation materials. However, it has been mainly done off-line in maintenance periods, and the existing on-line methods generally provide less information due to environment electric noises. In contrast to electric PD measurement system, the acoustic emission (AE) measurement system is well known for its immunity against environment electrical noises. In this thesis comparative evaluation of acoustic and electric signals of PD events generated in oil impregnated pressboard and papers is investigated. The thesis is focused on the characteristic of PD activity and the consequence of that on the electric and AE signal. PD classification is defined by using the relation between acoustic and electric signals of PD events. Although the sensitivity of the AE sensors has been improved over the years, but the detection of the acoustic signals from PD activity in power equipment mainly transformers remain the main challenge of acoustic measurement. Lack of information regarding evaluation of electric PD signals and AE signals beside the mechanical attenuation are two main disadvantages of AE measurement method. Due to mechanical and electrical mechanism of waves generated during PD activities, the mechanical and electrical behaviour of the waves is discussed in more detail to have better understanding about the electric and acoustic signals. PD sources were generated at different electrode configurations such as needle-plane and electrode ball arrangement within a sample in the tank to investigate different types of PD. Electric characteristics of PD and different PD measuring technics such as electric, UHF and acoustic beside the mechanical behaviour of the acoustic waves are also discussed. The corona in oil results regarding the relation between AE and electric PD signals shows the correlated behaviour between AE and PD apparent charge magnitude. However, in surface discharges these behaviours are uncorrelated. In this regards the surface discharge is studied in more detail, leading to the first results of PD with very low acoustic (no acoustic) activity. Regarding these results two different categories in term of AE signals of PDs are defined, silent PD and non-silent PD. Silent PDs are those PD activities without or with very low acoustic signal and non-silent PDs are with acoustic signal. The existence of the silent PD is validated via oscilloscope and digital signal processing (DSP) devices. Also, with different innovative methods and arrangements such as needle plane and ball electrodes with and without oil gap, the probable reasons of creation this phenomenon (silent PD) is investigated. It is found that the carbonization patterns start with non-silent PD and remain the same during silent PD activities even with very high electric apparent charges. It means the development in carbonization traces produce electric and AE signals and in contrast no changes in carbonization traces produce only electric signals with no AE signal. These results verify the advantages of using acoustic technics and electric measurement in terms of PD classification and localization.

Cite this

Comparative evaluation of acoustic and electric signals of partial discharges. / Najafi, Seyed Amir Mahmood.
Hannover, 2023. 117 p.

Research output: ThesisDoctoral thesis

Najafi, SAM 2023, 'Comparative evaluation of acoustic and electric signals of partial discharges', Doctor of Engineering, Leibniz University Hannover, Hannover. https://doi.org/10.15488/14092
Najafi, S. A. M. (2023). Comparative evaluation of acoustic and electric signals of partial discharges. [Doctoral thesis, Leibniz University Hannover]. https://doi.org/10.15488/14092
Najafi SAM. Comparative evaluation of acoustic and electric signals of partial discharges. Hannover, 2023. 117 p. doi: 10.15488/14092
Najafi, Seyed Amir Mahmood. / Comparative evaluation of acoustic and electric signals of partial discharges. Hannover, 2023. 117 p.
Download
@phdthesis{6ad63afb9f464710b06218f3d6579182,
title = "Comparative evaluation of acoustic and electric signals of partial discharges",
abstract = "Failures of power electric components such as transformers and outages can lead to a huge economical loss in the electric power grid. One of the main parts of a power electric components is the insulation system, namely, insulation oil, impregnated pressboard and paper. Several methods exist for diagnostics of these insulation materials. Partial discharge (PD) measurement known as one of the main non-destructive monitoring systems of the insulation materials. However, it has been mainly done off-line in maintenance periods, and the existing on-line methods generally provide less information due to environment electric noises. In contrast to electric PD measurement system, the acoustic emission (AE) measurement system is well known for its immunity against environment electrical noises. In this thesis comparative evaluation of acoustic and electric signals of PD events generated in oil impregnated pressboard and papers is investigated. The thesis is focused on the characteristic of PD activity and the consequence of that on the electric and AE signal. PD classification is defined by using the relation between acoustic and electric signals of PD events. Although the sensitivity of the AE sensors has been improved over the years, but the detection of the acoustic signals from PD activity in power equipment mainly transformers remain the main challenge of acoustic measurement. Lack of information regarding evaluation of electric PD signals and AE signals beside the mechanical attenuation are two main disadvantages of AE measurement method. Due to mechanical and electrical mechanism of waves generated during PD activities, the mechanical and electrical behaviour of the waves is discussed in more detail to have better understanding about the electric and acoustic signals. PD sources were generated at different electrode configurations such as needle-plane and electrode ball arrangement within a sample in the tank to investigate different types of PD. Electric characteristics of PD and different PD measuring technics such as electric, UHF and acoustic beside the mechanical behaviour of the acoustic waves are also discussed. The corona in oil results regarding the relation between AE and electric PD signals shows the correlated behaviour between AE and PD apparent charge magnitude. However, in surface discharges these behaviours are uncorrelated. In this regards the surface discharge is studied in more detail, leading to the first results of PD with very low acoustic (no acoustic) activity. Regarding these results two different categories in term of AE signals of PDs are defined, silent PD and non-silent PD. Silent PDs are those PD activities without or with very low acoustic signal and non-silent PDs are with acoustic signal. The existence of the silent PD is validated via oscilloscope and digital signal processing (DSP) devices. Also, with different innovative methods and arrangements such as needle plane and ball electrodes with and without oil gap, the probable reasons of creation this phenomenon (silent PD) is investigated. It is found that the carbonization patterns start with non-silent PD and remain the same during silent PD activities even with very high electric apparent charges. It means the development in carbonization traces produce electric and AE signals and in contrast no changes in carbonization traces produce only electric signals with no AE signal. These results verify the advantages of using acoustic technics and electric measurement in terms of PD classification and localization.",
author = "Najafi, {Seyed Amir Mahmood}",
year = "2023",
doi = "10.15488/14092",
language = "English",
school = "Leibniz University Hannover",

}

Download

TY - BOOK

T1 - Comparative evaluation of acoustic and electric signals of partial discharges

AU - Najafi, Seyed Amir Mahmood

PY - 2023

Y1 - 2023

N2 - Failures of power electric components such as transformers and outages can lead to a huge economical loss in the electric power grid. One of the main parts of a power electric components is the insulation system, namely, insulation oil, impregnated pressboard and paper. Several methods exist for diagnostics of these insulation materials. Partial discharge (PD) measurement known as one of the main non-destructive monitoring systems of the insulation materials. However, it has been mainly done off-line in maintenance periods, and the existing on-line methods generally provide less information due to environment electric noises. In contrast to electric PD measurement system, the acoustic emission (AE) measurement system is well known for its immunity against environment electrical noises. In this thesis comparative evaluation of acoustic and electric signals of PD events generated in oil impregnated pressboard and papers is investigated. The thesis is focused on the characteristic of PD activity and the consequence of that on the electric and AE signal. PD classification is defined by using the relation between acoustic and electric signals of PD events. Although the sensitivity of the AE sensors has been improved over the years, but the detection of the acoustic signals from PD activity in power equipment mainly transformers remain the main challenge of acoustic measurement. Lack of information regarding evaluation of electric PD signals and AE signals beside the mechanical attenuation are two main disadvantages of AE measurement method. Due to mechanical and electrical mechanism of waves generated during PD activities, the mechanical and electrical behaviour of the waves is discussed in more detail to have better understanding about the electric and acoustic signals. PD sources were generated at different electrode configurations such as needle-plane and electrode ball arrangement within a sample in the tank to investigate different types of PD. Electric characteristics of PD and different PD measuring technics such as electric, UHF and acoustic beside the mechanical behaviour of the acoustic waves are also discussed. The corona in oil results regarding the relation between AE and electric PD signals shows the correlated behaviour between AE and PD apparent charge magnitude. However, in surface discharges these behaviours are uncorrelated. In this regards the surface discharge is studied in more detail, leading to the first results of PD with very low acoustic (no acoustic) activity. Regarding these results two different categories in term of AE signals of PDs are defined, silent PD and non-silent PD. Silent PDs are those PD activities without or with very low acoustic signal and non-silent PDs are with acoustic signal. The existence of the silent PD is validated via oscilloscope and digital signal processing (DSP) devices. Also, with different innovative methods and arrangements such as needle plane and ball electrodes with and without oil gap, the probable reasons of creation this phenomenon (silent PD) is investigated. It is found that the carbonization patterns start with non-silent PD and remain the same during silent PD activities even with very high electric apparent charges. It means the development in carbonization traces produce electric and AE signals and in contrast no changes in carbonization traces produce only electric signals with no AE signal. These results verify the advantages of using acoustic technics and electric measurement in terms of PD classification and localization.

AB - Failures of power electric components such as transformers and outages can lead to a huge economical loss in the electric power grid. One of the main parts of a power electric components is the insulation system, namely, insulation oil, impregnated pressboard and paper. Several methods exist for diagnostics of these insulation materials. Partial discharge (PD) measurement known as one of the main non-destructive monitoring systems of the insulation materials. However, it has been mainly done off-line in maintenance periods, and the existing on-line methods generally provide less information due to environment electric noises. In contrast to electric PD measurement system, the acoustic emission (AE) measurement system is well known for its immunity against environment electrical noises. In this thesis comparative evaluation of acoustic and electric signals of PD events generated in oil impregnated pressboard and papers is investigated. The thesis is focused on the characteristic of PD activity and the consequence of that on the electric and AE signal. PD classification is defined by using the relation between acoustic and electric signals of PD events. Although the sensitivity of the AE sensors has been improved over the years, but the detection of the acoustic signals from PD activity in power equipment mainly transformers remain the main challenge of acoustic measurement. Lack of information regarding evaluation of electric PD signals and AE signals beside the mechanical attenuation are two main disadvantages of AE measurement method. Due to mechanical and electrical mechanism of waves generated during PD activities, the mechanical and electrical behaviour of the waves is discussed in more detail to have better understanding about the electric and acoustic signals. PD sources were generated at different electrode configurations such as needle-plane and electrode ball arrangement within a sample in the tank to investigate different types of PD. Electric characteristics of PD and different PD measuring technics such as electric, UHF and acoustic beside the mechanical behaviour of the acoustic waves are also discussed. The corona in oil results regarding the relation between AE and electric PD signals shows the correlated behaviour between AE and PD apparent charge magnitude. However, in surface discharges these behaviours are uncorrelated. In this regards the surface discharge is studied in more detail, leading to the first results of PD with very low acoustic (no acoustic) activity. Regarding these results two different categories in term of AE signals of PDs are defined, silent PD and non-silent PD. Silent PDs are those PD activities without or with very low acoustic signal and non-silent PDs are with acoustic signal. The existence of the silent PD is validated via oscilloscope and digital signal processing (DSP) devices. Also, with different innovative methods and arrangements such as needle plane and ball electrodes with and without oil gap, the probable reasons of creation this phenomenon (silent PD) is investigated. It is found that the carbonization patterns start with non-silent PD and remain the same during silent PD activities even with very high electric apparent charges. It means the development in carbonization traces produce electric and AE signals and in contrast no changes in carbonization traces produce only electric signals with no AE signal. These results verify the advantages of using acoustic technics and electric measurement in terms of PD classification and localization.

U2 - 10.15488/14092

DO - 10.15488/14092

M3 - Doctoral thesis

CY - Hannover

ER -