Details
Original language | English |
---|---|
Pages (from-to) | 610-621 |
Number of pages | 12 |
Journal | Molecular Nutrition and Food Research |
Volume | 59 |
Issue number | 4 |
Publication status | Published - 1 Apr 2015 |
Abstract
Scope: Flavan-3-ols are abundant polyphenols in human nutrition and are associated with beneficial health effects. The aim of this study was to comparatively investigate the metabolic fate of (-)-epicatechin, procyanidin B1, and polymeric procyanidins in a randomized cross-over study in humans. Methods and results: Parent compounds, conjugates, and microbial metabolites were determined in plasma, urine, and faeces by HPLC-MS and GC-MS/MS. Glucuronidated, sulfated, and methylated (-)-epicatechin and 5-(3′,4′-dihydroxyphenyl)-valerolactone were the dominant metabolites in blood and urine. In addition, minor amounts of procyanidin B1 and 4-hydroxy-5-(3′,4′-dihydroxyphenyl)valeric acid and their conjugated metabolites were detected. The formation of 5-(3′,4′-dihydroxyphenyl)-valerolactone and 4-hydroxy-5-(3′,4′-dihydroxyphenyl)valeric acid varied largely between individuals as well as with the degree of polymerization of flavan-3-ols. Monomer units were not detectable in plasma or urine after procyanidin B1 and polymeric procyanidin intake. No correlation was found between the intake of flavan-3-ols and the occurrence of phenolic acids in blood and urine or the phenolic compound profiles in faeces. Conclusion: In addition to conjugated metabolites derived from the absorption of monomeric flavan-3-ols, 5-(3′,4′-dihydroxyphenyl)-valerolactone represents an important in vivo metabolite of (-)-epicatechin and procyanidin B1 produced by the gut microbiota.
Keywords
- Bioavailability, Catechins, Drug metabolism, Microbial degradation, Procyanidins
ASJC Scopus subject areas
- Biochemistry, Genetics and Molecular Biology(all)
- Biotechnology
- Agricultural and Biological Sciences(all)
- Food Science
Sustainable Development Goals
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Molecular Nutrition and Food Research, Vol. 59, No. 4, 01.04.2015, p. 610-621.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Comparative biokinetics and metabolism of pure monomeric, dimeric, and polymeric flavan-3-ols: A randomized cross-over study in humans
AU - Wiese, S.
AU - Esatbeyoglu, T.
AU - Winterhalter, P.
AU - Kruse, H.-P.
AU - Winkler, S.
AU - Bub, A.
AU - Kulling, S.E.
N1 - Publisher Copyright: © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Copyright: Copyright 2015 Elsevier B.V., All rights reserved.
PY - 2015/4/1
Y1 - 2015/4/1
N2 - Scope: Flavan-3-ols are abundant polyphenols in human nutrition and are associated with beneficial health effects. The aim of this study was to comparatively investigate the metabolic fate of (-)-epicatechin, procyanidin B1, and polymeric procyanidins in a randomized cross-over study in humans. Methods and results: Parent compounds, conjugates, and microbial metabolites were determined in plasma, urine, and faeces by HPLC-MS and GC-MS/MS. Glucuronidated, sulfated, and methylated (-)-epicatechin and 5-(3′,4′-dihydroxyphenyl)-valerolactone were the dominant metabolites in blood and urine. In addition, minor amounts of procyanidin B1 and 4-hydroxy-5-(3′,4′-dihydroxyphenyl)valeric acid and their conjugated metabolites were detected. The formation of 5-(3′,4′-dihydroxyphenyl)-valerolactone and 4-hydroxy-5-(3′,4′-dihydroxyphenyl)valeric acid varied largely between individuals as well as with the degree of polymerization of flavan-3-ols. Monomer units were not detectable in plasma or urine after procyanidin B1 and polymeric procyanidin intake. No correlation was found between the intake of flavan-3-ols and the occurrence of phenolic acids in blood and urine or the phenolic compound profiles in faeces. Conclusion: In addition to conjugated metabolites derived from the absorption of monomeric flavan-3-ols, 5-(3′,4′-dihydroxyphenyl)-valerolactone represents an important in vivo metabolite of (-)-epicatechin and procyanidin B1 produced by the gut microbiota.
AB - Scope: Flavan-3-ols are abundant polyphenols in human nutrition and are associated with beneficial health effects. The aim of this study was to comparatively investigate the metabolic fate of (-)-epicatechin, procyanidin B1, and polymeric procyanidins in a randomized cross-over study in humans. Methods and results: Parent compounds, conjugates, and microbial metabolites were determined in plasma, urine, and faeces by HPLC-MS and GC-MS/MS. Glucuronidated, sulfated, and methylated (-)-epicatechin and 5-(3′,4′-dihydroxyphenyl)-valerolactone were the dominant metabolites in blood and urine. In addition, minor amounts of procyanidin B1 and 4-hydroxy-5-(3′,4′-dihydroxyphenyl)valeric acid and their conjugated metabolites were detected. The formation of 5-(3′,4′-dihydroxyphenyl)-valerolactone and 4-hydroxy-5-(3′,4′-dihydroxyphenyl)valeric acid varied largely between individuals as well as with the degree of polymerization of flavan-3-ols. Monomer units were not detectable in plasma or urine after procyanidin B1 and polymeric procyanidin intake. No correlation was found between the intake of flavan-3-ols and the occurrence of phenolic acids in blood and urine or the phenolic compound profiles in faeces. Conclusion: In addition to conjugated metabolites derived from the absorption of monomeric flavan-3-ols, 5-(3′,4′-dihydroxyphenyl)-valerolactone represents an important in vivo metabolite of (-)-epicatechin and procyanidin B1 produced by the gut microbiota.
KW - Bioavailability
KW - Catechins
KW - Drug metabolism
KW - Microbial degradation
KW - Procyanidins
UR - http://www.scopus.com/inward/record.url?scp=84926112892&partnerID=8YFLogxK
U2 - 10.1002/mnfr.201400422
DO - 10.1002/mnfr.201400422
M3 - Article
VL - 59
SP - 610
EP - 621
JO - Molecular Nutrition and Food Research
JF - Molecular Nutrition and Food Research
SN - 1613-4125
IS - 4
ER -