Details
Original language | English |
---|---|
Pages (from-to) | 623-631 |
Number of pages | 9 |
Journal | Proceedings of SPIE - The International Society for Optical Engineering |
Volume | 5960 |
Issue number | 2 |
Publication status | Published - 2005 |
Event | Visual Communications and Image Processing 2005 - Beijing, China Duration: 12 Jul 2005 → 15 Jul 2005 |
Abstract
Standard video compression techniques apply motion-compensated prediction combined with transform coding of the prediction error. In the context of prediction with fractional-pel motion vector resolution it was shown, that aliasing components contained in an image signal are limiting the prediction accuracy obtained by motion compensation. In order to consider aliasing, quantisation and motion estimation errors, camera noise, etc., we analytically developed a two-dimensional (2D) non-separable interpolation filter, which is calculated for each frame independently by minimising the prediction error energy. For every fractional-pel position to be interpolated, an individual set of 2D filter coefficients is determined. Since transmitting filter coefficients as side information results in an additional bit rate, which is almost independent for different total bit rates and image resolutions, the overall gain decreases when total bit rates decrease. In this paper we present an algorithm, which regards the non-separable two-dimensional filter as a polyphase filter. For each frame, predicting the interpolation filter impulse response through evaluation of the polyphase filter, we only have to encode the filter coefficients prediction error. This enables bit rate savings, needed for transmitting filter coefficients of up to 75% compared to PCM coding. A coding gain of up to 1,2 dB Y-PSNR at same bit rate or up to 30% reduction of bit rate is obtained for HDTV-sequences compared to the standard H.264/AVC. Up to 0,5 dB (up to 10% bit rate reduction) are achieved for CIF-sequences.
Keywords
- Adaptive interpolation, Adaptive Wiener filter, H.264/AVC, Video coding
ASJC Scopus subject areas
- Materials Science(all)
- Electronic, Optical and Magnetic Materials
- Physics and Astronomy(all)
- Condensed Matter Physics
- Computer Science(all)
- Computer Science Applications
- Mathematics(all)
- Applied Mathematics
- Engineering(all)
- Electrical and Electronic Engineering
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Proceedings of SPIE - The International Society for Optical Engineering, Vol. 5960, No. 2, 2005, p. 623-631.
Research output: Contribution to journal › Conference article › Research › peer review
}
TY - JOUR
T1 - Coding of Coefficients of two-dimensional non-separable Adaptive Wiener Interpolation Filter
AU - Vatis, Y.
AU - Edler, B.
AU - Nguyen, D. T.
AU - Ostermann, J.
AU - Wassermann, I.
PY - 2005
Y1 - 2005
N2 - Standard video compression techniques apply motion-compensated prediction combined with transform coding of the prediction error. In the context of prediction with fractional-pel motion vector resolution it was shown, that aliasing components contained in an image signal are limiting the prediction accuracy obtained by motion compensation. In order to consider aliasing, quantisation and motion estimation errors, camera noise, etc., we analytically developed a two-dimensional (2D) non-separable interpolation filter, which is calculated for each frame independently by minimising the prediction error energy. For every fractional-pel position to be interpolated, an individual set of 2D filter coefficients is determined. Since transmitting filter coefficients as side information results in an additional bit rate, which is almost independent for different total bit rates and image resolutions, the overall gain decreases when total bit rates decrease. In this paper we present an algorithm, which regards the non-separable two-dimensional filter as a polyphase filter. For each frame, predicting the interpolation filter impulse response through evaluation of the polyphase filter, we only have to encode the filter coefficients prediction error. This enables bit rate savings, needed for transmitting filter coefficients of up to 75% compared to PCM coding. A coding gain of up to 1,2 dB Y-PSNR at same bit rate or up to 30% reduction of bit rate is obtained for HDTV-sequences compared to the standard H.264/AVC. Up to 0,5 dB (up to 10% bit rate reduction) are achieved for CIF-sequences.
AB - Standard video compression techniques apply motion-compensated prediction combined with transform coding of the prediction error. In the context of prediction with fractional-pel motion vector resolution it was shown, that aliasing components contained in an image signal are limiting the prediction accuracy obtained by motion compensation. In order to consider aliasing, quantisation and motion estimation errors, camera noise, etc., we analytically developed a two-dimensional (2D) non-separable interpolation filter, which is calculated for each frame independently by minimising the prediction error energy. For every fractional-pel position to be interpolated, an individual set of 2D filter coefficients is determined. Since transmitting filter coefficients as side information results in an additional bit rate, which is almost independent for different total bit rates and image resolutions, the overall gain decreases when total bit rates decrease. In this paper we present an algorithm, which regards the non-separable two-dimensional filter as a polyphase filter. For each frame, predicting the interpolation filter impulse response through evaluation of the polyphase filter, we only have to encode the filter coefficients prediction error. This enables bit rate savings, needed for transmitting filter coefficients of up to 75% compared to PCM coding. A coding gain of up to 1,2 dB Y-PSNR at same bit rate or up to 30% reduction of bit rate is obtained for HDTV-sequences compared to the standard H.264/AVC. Up to 0,5 dB (up to 10% bit rate reduction) are achieved for CIF-sequences.
KW - Adaptive interpolation
KW - Adaptive Wiener filter
KW - H.264/AVC
KW - Video coding
UR - http://www.scopus.com/inward/record.url?scp=32544460033&partnerID=8YFLogxK
U2 - 10.1117/12.632494
DO - 10.1117/12.632494
M3 - Conference article
AN - SCOPUS:32544460033
VL - 5960
SP - 623
EP - 631
JO - Proceedings of SPIE - The International Society for Optical Engineering
JF - Proceedings of SPIE - The International Society for Optical Engineering
SN - 0277-786X
IS - 2
T2 - Visual Communications and Image Processing 2005
Y2 - 12 July 2005 through 15 July 2005
ER -