Loading [MathJax]/extensions/tex2jax.js

Clique numbers of graphs

Research output: Contribution to journalArticleResearchpeer review

Authors

  • Paul Erdös
  • Marcel Erné

External Research Organisations

  • Hungarian Academy of Sciences

Details

Original languageEnglish
Pages (from-to)235-242
Number of pages8
JournalDiscrete mathematics
Volume59
Issue number3
Publication statusPublished - May 1986

Abstract

For each natural number n, denote by G(n) the set of all numbers c such that there exists a graph with exactly c cliques (i.e., complete subgraphs) and n vertices. We prove the asymptotic estimate |G(n)| = 0(2n · n-2/5) and show that all natural numbers between n + 1 and 2n-6n5/6 belong to G(n). Thus we obtain lim n→∞ |G(n)| 2n=0, while lim n→∞ |G(n)| an= ∞ for all 0 < a < 2.

ASJC Scopus subject areas

Cite this

Clique numbers of graphs. / Erdös, Paul; Erné, Marcel.
In: Discrete mathematics, Vol. 59, No. 3, 05.1986, p. 235-242.

Research output: Contribution to journalArticleResearchpeer review

Erdös, P & Erné, M 1986, 'Clique numbers of graphs', Discrete mathematics, vol. 59, no. 3, pp. 235-242. https://doi.org/10.1016/0012-365X(86)90170-6
Erdös P, Erné M. Clique numbers of graphs. Discrete mathematics. 1986 May;59(3):235-242. doi: 10.1016/0012-365X(86)90170-6
Erdös, Paul ; Erné, Marcel. / Clique numbers of graphs. In: Discrete mathematics. 1986 ; Vol. 59, No. 3. pp. 235-242.
Download
@article{36c7f6eb6a424969ab534158ab099dd4,
title = "Clique numbers of graphs",
abstract = "For each natural number n, denote by G(n) the set of all numbers c such that there exists a graph with exactly c cliques (i.e., complete subgraphs) and n vertices. We prove the asymptotic estimate |G(n)| = 0(2n · n-2/5) and show that all natural numbers between n + 1 and 2n-6n5/6 belong to G(n). Thus we obtain lim n→∞ |G(n)| 2n=0, while lim n→∞ |G(n)| an= ∞ for all 0 < a < 2.",
author = "Paul Erd{\"o}s and Marcel Ern{\'e}",
year = "1986",
month = may,
doi = "10.1016/0012-365X(86)90170-6",
language = "English",
volume = "59",
pages = "235--242",
journal = "Discrete mathematics",
issn = "0012-365X",
publisher = "Elsevier",
number = "3",

}

Download

TY - JOUR

T1 - Clique numbers of graphs

AU - Erdös, Paul

AU - Erné, Marcel

PY - 1986/5

Y1 - 1986/5

N2 - For each natural number n, denote by G(n) the set of all numbers c such that there exists a graph with exactly c cliques (i.e., complete subgraphs) and n vertices. We prove the asymptotic estimate |G(n)| = 0(2n · n-2/5) and show that all natural numbers between n + 1 and 2n-6n5/6 belong to G(n). Thus we obtain lim n→∞ |G(n)| 2n=0, while lim n→∞ |G(n)| an= ∞ for all 0 < a < 2.

AB - For each natural number n, denote by G(n) the set of all numbers c such that there exists a graph with exactly c cliques (i.e., complete subgraphs) and n vertices. We prove the asymptotic estimate |G(n)| = 0(2n · n-2/5) and show that all natural numbers between n + 1 and 2n-6n5/6 belong to G(n). Thus we obtain lim n→∞ |G(n)| 2n=0, while lim n→∞ |G(n)| an= ∞ for all 0 < a < 2.

UR - http://www.scopus.com/inward/record.url?scp=24844464547&partnerID=8YFLogxK

U2 - 10.1016/0012-365X(86)90170-6

DO - 10.1016/0012-365X(86)90170-6

M3 - Article

AN - SCOPUS:24844464547

VL - 59

SP - 235

EP - 242

JO - Discrete mathematics

JF - Discrete mathematics

SN - 0012-365X

IS - 3

ER -