Climate-smart agriculture practices for mitigating greenhouse gas emissions

Research output: Chapter in book/report/conference proceedingContribution to book/anthologyResearchpeer review

Authors

  • M. Zaman
  • K. Kleineidam
  • L. Bakken
  • J. Berendt
  • C. Bracken
  • K. Butterbach-Bahl
  • Z. Cai
  • S. X. Chang
  • T. Clough
  • K. Dawar
  • W. X. Ding
  • P. Dörsch
  • M. dos Reis Martins
  • C. Eckhardt
  • S. Fiedler
  • T. Frosch
  • J. Goopy
  • C. M. Görres
  • A. Gupta
  • S. Henjes
  • M. E.G. Hofmann
  • M. A. Horn
  • M. M.R. Jahangir
  • A. Jansen-Willems
  • K. Lenhart
  • L. Heng
  • D. Lewicka-Szczebak
  • G. Lucic
  • L. Merbold
  • J. Mohn
  • L. Molstad
  • G. Moser
  • P. Murphy
  • A. Sanz-Cobena
  • M. Šimek
  • S. Urquiaga
  • R. Well
  • N. Wrage-Mönnig
  • S. Zaman
  • J. Zhang
  • C. Müller

Research Organisations

External Research Organisations

  • International Atomic Energy Agency (IAEA)
  • Justus Liebig University Giessen
  • Norwegian University of Life Sciences
  • University of Rostock
  • University College Dublin
  • Karlsruhe Institute of Technology (KIT)
  • CAS - Institute of Atmospheric Physics
  • International Livestock Research Institute
  • Nanjing Normal University
  • University of Alberta
  • Lincoln University
  • NWFP Agricultural University
  • Chinese Academy of Sciences (CAS)
  • Embrapa - Empresa Brasileira de Pesquisa Agropecuaria
  • Technische Universität Darmstadt
  • Hochschule Geisenheim University
  • Independent Consultant
  • Picarro B.V., Eindhoven
  • Bangladesh Agricultural University
  • Münster University of Applied Sciences
  • University of Wrocław
  • PICARRO
  • Swiss Federal Laboratories for Material Science and Technology (EMPA)
  • Technical University of Madrid (UPM)
  • University of South Bohemia
  • Johann Heinrich von Thünen Institute, Federal Research Institute for Rural Areas, Forestry and Fisheries
  • University of Canterbury
View graph of relations

Details

Original languageEnglish
Title of host publicationMeasuring Emission of Agricultural Greenhouse Gases and Developing Mitigation Options using Nuclear and Related Techniques
Subtitle of host publicationApplications of Nuclear Techniques for GHGs
PublisherSpringer International Publishing AG
Pages303-328
Number of pages26
ISBN (electronic)9783030553968
ISBN (print)9783030553951
Publication statusPublished - 30 Jan 2021

Abstract

Agricultural lands make up approximately 37% of the global land surface, and agriculture is a significant source of greenhouse gas (GHG) emissions, including carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). Those GHGs are responsible for the majority of the anthropogenic globalwarming effect.Agricultural GHG emissions are associated with agricultural soil management (e.g. tillage), use of both synthetic and organic fertilisers, livestock management, burning of fossil fuel for agricultural operations, and burning of agricultural residues and land use change. When natural ecosystems such as grasslands are converted to agricultural production, 20-40% of the soil organic carbon (SOC) is lost over time, following cultivation.We thus need to develop management practices that can maintain or even increase SOC storage in and reduce GHG emissions from agricultural ecosystems. We need to design systematic approaches and agricultural strategies that can ensure sustainable food production under predicted climate change scenarios, approaches that are being called climate-smart agriculture (CSA). Climate-smart agricultural management practices, including conservation tillage, use of cover crops and biochar application to agricultural fields, and strategic application of synthetic and organic fertilisers have been considered a way to reduce GHG emission from agriculture. Agricultural management practices can be improved to decreasing disturbance to the soil by decreasing the frequency and extent of cultivation as a way to minimise soil C loss and/or to increase soil C storage. Fertiliser nitrogen (N) use efficiency can be improved to reduce fertilizer N application and N loss. Management measures can also be taken to minimise agricultural biomass burning. This chapter reviews the current literature on CSA practices that are available to reduce GHG emissions and increase soil C sequestration and develops a guideline on best management practices to reduce GHG emissions, increase C sequestration, and enhance crop productivity in agricultural production systems.

Keywords

    Agriculture, C sequestration, Carbon dioxide, Climate-smart agriculture, GHG, Methane, Mitigation, Nitrous oxide

ASJC Scopus subject areas

Sustainable Development Goals

Cite this

Climate-smart agriculture practices for mitigating greenhouse gas emissions. / Zaman, M.; Kleineidam, K.; Bakken, L. et al.
Measuring Emission of Agricultural Greenhouse Gases and Developing Mitigation Options using Nuclear and Related Techniques: Applications of Nuclear Techniques for GHGs. Springer International Publishing AG, 2021. p. 303-328.

Research output: Chapter in book/report/conference proceedingContribution to book/anthologyResearchpeer review

Zaman, M, Kleineidam, K, Bakken, L, Berendt, J, Bracken, C, Butterbach-Bahl, K, Cai, Z, Chang, SX, Clough, T, Dawar, K, Ding, WX, Dörsch, P, dos Reis Martins, M, Eckhardt, C, Fiedler, S, Frosch, T, Goopy, J, Görres, CM, Gupta, A, Henjes, S, Hofmann, MEG, Horn, MA, Jahangir, MMR, Jansen-Willems, A, Lenhart, K, Heng, L, Lewicka-Szczebak, D, Lucic, G, Merbold, L, Mohn, J, Molstad, L, Moser, G, Murphy, P, Sanz-Cobena, A, Šimek, M, Urquiaga, S, Well, R, Wrage-Mönnig, N, Zaman, S, Zhang, J & Müller, C 2021, Climate-smart agriculture practices for mitigating greenhouse gas emissions. in Measuring Emission of Agricultural Greenhouse Gases and Developing Mitigation Options using Nuclear and Related Techniques: Applications of Nuclear Techniques for GHGs. Springer International Publishing AG, pp. 303-328. https://doi.org/10.1007/978-3-030-55396-8_8
Zaman, M., Kleineidam, K., Bakken, L., Berendt, J., Bracken, C., Butterbach-Bahl, K., Cai, Z., Chang, S. X., Clough, T., Dawar, K., Ding, W. X., Dörsch, P., dos Reis Martins, M., Eckhardt, C., Fiedler, S., Frosch, T., Goopy, J., Görres, C. M., Gupta, A., ... Müller, C. (2021). Climate-smart agriculture practices for mitigating greenhouse gas emissions. In Measuring Emission of Agricultural Greenhouse Gases and Developing Mitigation Options using Nuclear and Related Techniques: Applications of Nuclear Techniques for GHGs (pp. 303-328). Springer International Publishing AG. https://doi.org/10.1007/978-3-030-55396-8_8
Zaman M, Kleineidam K, Bakken L, Berendt J, Bracken C, Butterbach-Bahl K et al. Climate-smart agriculture practices for mitigating greenhouse gas emissions. In Measuring Emission of Agricultural Greenhouse Gases and Developing Mitigation Options using Nuclear and Related Techniques: Applications of Nuclear Techniques for GHGs. Springer International Publishing AG. 2021. p. 303-328 doi: 10.1007/978-3-030-55396-8_8
Zaman, M. ; Kleineidam, K. ; Bakken, L. et al. / Climate-smart agriculture practices for mitigating greenhouse gas emissions. Measuring Emission of Agricultural Greenhouse Gases and Developing Mitigation Options using Nuclear and Related Techniques: Applications of Nuclear Techniques for GHGs. Springer International Publishing AG, 2021. pp. 303-328
Download
@inbook{be79af00fb464fada948fd05450f06b2,
title = "Climate-smart agriculture practices for mitigating greenhouse gas emissions",
abstract = "Agricultural lands make up approximately 37% of the global land surface, and agriculture is a significant source of greenhouse gas (GHG) emissions, including carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). Those GHGs are responsible for the majority of the anthropogenic globalwarming effect.Agricultural GHG emissions are associated with agricultural soil management (e.g. tillage), use of both synthetic and organic fertilisers, livestock management, burning of fossil fuel for agricultural operations, and burning of agricultural residues and land use change. When natural ecosystems such as grasslands are converted to agricultural production, 20-40% of the soil organic carbon (SOC) is lost over time, following cultivation.We thus need to develop management practices that can maintain or even increase SOC storage in and reduce GHG emissions from agricultural ecosystems. We need to design systematic approaches and agricultural strategies that can ensure sustainable food production under predicted climate change scenarios, approaches that are being called climate-smart agriculture (CSA). Climate-smart agricultural management practices, including conservation tillage, use of cover crops and biochar application to agricultural fields, and strategic application of synthetic and organic fertilisers have been considered a way to reduce GHG emission from agriculture. Agricultural management practices can be improved to decreasing disturbance to the soil by decreasing the frequency and extent of cultivation as a way to minimise soil C loss and/or to increase soil C storage. Fertiliser nitrogen (N) use efficiency can be improved to reduce fertilizer N application and N loss. Management measures can also be taken to minimise agricultural biomass burning. This chapter reviews the current literature on CSA practices that are available to reduce GHG emissions and increase soil C sequestration and develops a guideline on best management practices to reduce GHG emissions, increase C sequestration, and enhance crop productivity in agricultural production systems.",
keywords = "Agriculture, C sequestration, Carbon dioxide, Climate-smart agriculture, GHG, Methane, Mitigation, Nitrous oxide",
author = "M. Zaman and K. Kleineidam and L. Bakken and J. Berendt and C. Bracken and K. Butterbach-Bahl and Z. Cai and Chang, {S. X.} and T. Clough and K. Dawar and Ding, {W. X.} and P. D{\"o}rsch and {dos Reis Martins}, M. and C. Eckhardt and S. Fiedler and T. Frosch and J. Goopy and G{\"o}rres, {C. M.} and A. Gupta and S. Henjes and Hofmann, {M. E.G.} and Horn, {M. A.} and Jahangir, {M. M.R.} and A. Jansen-Willems and K. Lenhart and L. Heng and D. Lewicka-Szczebak and G. Lucic and L. Merbold and J. Mohn and L. Molstad and G. Moser and P. Murphy and A. Sanz-Cobena and M. {\v S}imek and S. Urquiaga and R. Well and N. Wrage-M{\"o}nnig and S. Zaman and J. Zhang and C. M{\"u}ller",
year = "2021",
month = jan,
day = "30",
doi = "10.1007/978-3-030-55396-8_8",
language = "English",
isbn = "9783030553951",
pages = "303--328",
booktitle = "Measuring Emission of Agricultural Greenhouse Gases and Developing Mitigation Options using Nuclear and Related Techniques",
publisher = "Springer International Publishing AG",
address = "Switzerland",

}

Download

TY - CHAP

T1 - Climate-smart agriculture practices for mitigating greenhouse gas emissions

AU - Zaman, M.

AU - Kleineidam, K.

AU - Bakken, L.

AU - Berendt, J.

AU - Bracken, C.

AU - Butterbach-Bahl, K.

AU - Cai, Z.

AU - Chang, S. X.

AU - Clough, T.

AU - Dawar, K.

AU - Ding, W. X.

AU - Dörsch, P.

AU - dos Reis Martins, M.

AU - Eckhardt, C.

AU - Fiedler, S.

AU - Frosch, T.

AU - Goopy, J.

AU - Görres, C. M.

AU - Gupta, A.

AU - Henjes, S.

AU - Hofmann, M. E.G.

AU - Horn, M. A.

AU - Jahangir, M. M.R.

AU - Jansen-Willems, A.

AU - Lenhart, K.

AU - Heng, L.

AU - Lewicka-Szczebak, D.

AU - Lucic, G.

AU - Merbold, L.

AU - Mohn, J.

AU - Molstad, L.

AU - Moser, G.

AU - Murphy, P.

AU - Sanz-Cobena, A.

AU - Šimek, M.

AU - Urquiaga, S.

AU - Well, R.

AU - Wrage-Mönnig, N.

AU - Zaman, S.

AU - Zhang, J.

AU - Müller, C.

PY - 2021/1/30

Y1 - 2021/1/30

N2 - Agricultural lands make up approximately 37% of the global land surface, and agriculture is a significant source of greenhouse gas (GHG) emissions, including carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). Those GHGs are responsible for the majority of the anthropogenic globalwarming effect.Agricultural GHG emissions are associated with agricultural soil management (e.g. tillage), use of both synthetic and organic fertilisers, livestock management, burning of fossil fuel for agricultural operations, and burning of agricultural residues and land use change. When natural ecosystems such as grasslands are converted to agricultural production, 20-40% of the soil organic carbon (SOC) is lost over time, following cultivation.We thus need to develop management practices that can maintain or even increase SOC storage in and reduce GHG emissions from agricultural ecosystems. We need to design systematic approaches and agricultural strategies that can ensure sustainable food production under predicted climate change scenarios, approaches that are being called climate-smart agriculture (CSA). Climate-smart agricultural management practices, including conservation tillage, use of cover crops and biochar application to agricultural fields, and strategic application of synthetic and organic fertilisers have been considered a way to reduce GHG emission from agriculture. Agricultural management practices can be improved to decreasing disturbance to the soil by decreasing the frequency and extent of cultivation as a way to minimise soil C loss and/or to increase soil C storage. Fertiliser nitrogen (N) use efficiency can be improved to reduce fertilizer N application and N loss. Management measures can also be taken to minimise agricultural biomass burning. This chapter reviews the current literature on CSA practices that are available to reduce GHG emissions and increase soil C sequestration and develops a guideline on best management practices to reduce GHG emissions, increase C sequestration, and enhance crop productivity in agricultural production systems.

AB - Agricultural lands make up approximately 37% of the global land surface, and agriculture is a significant source of greenhouse gas (GHG) emissions, including carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). Those GHGs are responsible for the majority of the anthropogenic globalwarming effect.Agricultural GHG emissions are associated with agricultural soil management (e.g. tillage), use of both synthetic and organic fertilisers, livestock management, burning of fossil fuel for agricultural operations, and burning of agricultural residues and land use change. When natural ecosystems such as grasslands are converted to agricultural production, 20-40% of the soil organic carbon (SOC) is lost over time, following cultivation.We thus need to develop management practices that can maintain or even increase SOC storage in and reduce GHG emissions from agricultural ecosystems. We need to design systematic approaches and agricultural strategies that can ensure sustainable food production under predicted climate change scenarios, approaches that are being called climate-smart agriculture (CSA). Climate-smart agricultural management practices, including conservation tillage, use of cover crops and biochar application to agricultural fields, and strategic application of synthetic and organic fertilisers have been considered a way to reduce GHG emission from agriculture. Agricultural management practices can be improved to decreasing disturbance to the soil by decreasing the frequency and extent of cultivation as a way to minimise soil C loss and/or to increase soil C storage. Fertiliser nitrogen (N) use efficiency can be improved to reduce fertilizer N application and N loss. Management measures can also be taken to minimise agricultural biomass burning. This chapter reviews the current literature on CSA practices that are available to reduce GHG emissions and increase soil C sequestration and develops a guideline on best management practices to reduce GHG emissions, increase C sequestration, and enhance crop productivity in agricultural production systems.

KW - Agriculture

KW - C sequestration

KW - Carbon dioxide

KW - Climate-smart agriculture

KW - GHG

KW - Methane

KW - Mitigation

KW - Nitrous oxide

UR - http://www.scopus.com/inward/record.url?scp=85128746424&partnerID=8YFLogxK

U2 - 10.1007/978-3-030-55396-8_8

DO - 10.1007/978-3-030-55396-8_8

M3 - Contribution to book/anthology

AN - SCOPUS:85128746424

SN - 9783030553951

SP - 303

EP - 328

BT - Measuring Emission of Agricultural Greenhouse Gases and Developing Mitigation Options using Nuclear and Related Techniques

PB - Springer International Publishing AG

ER -

By the same author(s)