Details
Original language | English |
---|---|
Article number | 6470 |
Journal | Molecules |
Volume | 27 |
Issue number | 19 |
Publication status | Published - Oct 2022 |
Abstract
Cyperus species represent a group of cosmopolitan plants used in folk medicine to treat several diseases. In the current study, the phytochemical profile of Cyperus laevigatus ethanolic extract (CLEE) was assessed using UPLC-QTOF–MS/MS. The protective effect of CLEE at 50 and 100 mg /kg body weight (b.w.) was evaluated on hepatorenal injuries induced by thioacetamide (100 mg/kg) via investigation of the extract’s effects on oxidative stress, inflammatory markers and histopathological changes in the liver and kidney. UPLC-QTOF–MS/MS analysis of CLEE resulted in the identification of 94 compounds, including organic and phenolic acids, flavones, aurones, and fatty acids. CLEE improved the antioxidant status in the liver and kidney, as manifested by enhancement of reduced glutathione (GSH) and coenzyme Q10 (CoQ10), in addition to the reduction in malondialdehyde (MDA), nitric oxide (NO), and 8-hydroxy-2′-deoxyguanosine (8OHdG). Moreover, CLEE positively affected oxidative stress parameters in plasma and thwarted the depletion of hepatorenal ATP content by thioacetamide (TAA). Furthermore, treatment of rats with CLEE alleviated the significant increase in plasma liver enzymes, kidney function parameters, and inflammatory markers. The protective effect of CLEE was confirmed by a histopathological study of the liver and kidney. Our results proposed that CLEE may reduce TAA-hepatorenal toxicity via its antioxidant and anti-inflammatory properties suppressing oxidative stress.
Keywords
- aurones, flavonoids, hepatorenal injuries, histopathology, inflammation markers, oxidative stress, smooth flatsedge
ASJC Scopus subject areas
- Pharmacology, Toxicology and Pharmaceutics(all)
- Drug Discovery
- Chemistry(all)
- Analytical Chemistry
- Chemistry(all)
- Chemistry (miscellaneous)
- Biochemistry, Genetics and Molecular Biology(all)
- Molecular Medicine
- Chemistry(all)
- Physical and Theoretical Chemistry
- Pharmacology, Toxicology and Pharmaceutics(all)
- Pharmaceutical Science
- Chemistry(all)
- Organic Chemistry
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Molecules, Vol. 27, No. 19, 6470, 10.2022.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Chemical Profile of Cyperus laevigatus and Its Protective Effects against Thioacetamide-Induced Hepatorenal Toxicity in Rats
AU - Ayoub, Iriny
AU - Elbaset, Marawan A.
AU - Elghonemy, Mai M.
AU - bashandy, samir
AU - Ibrahim, Fatma A. A.
AU - Ahmed-Farid, Omar
AU - Elgendy, Abdel Nasser
AU - Afifi, Sherif M.
AU - Esatbeyoglu, Tuba
AU - Farrag, Abdel Razik H.
AU - farag, mohamed
AU - Elshamy, Abdelsamed
N1 - Funding Information: The publication of this article was funded by the Open Access Fund of Leibniz Universität Hannover.
PY - 2022/10
Y1 - 2022/10
N2 - Cyperus species represent a group of cosmopolitan plants used in folk medicine to treat several diseases. In the current study, the phytochemical profile of Cyperus laevigatus ethanolic extract (CLEE) was assessed using UPLC-QTOF–MS/MS. The protective effect of CLEE at 50 and 100 mg /kg body weight (b.w.) was evaluated on hepatorenal injuries induced by thioacetamide (100 mg/kg) via investigation of the extract’s effects on oxidative stress, inflammatory markers and histopathological changes in the liver and kidney. UPLC-QTOF–MS/MS analysis of CLEE resulted in the identification of 94 compounds, including organic and phenolic acids, flavones, aurones, and fatty acids. CLEE improved the antioxidant status in the liver and kidney, as manifested by enhancement of reduced glutathione (GSH) and coenzyme Q10 (CoQ10), in addition to the reduction in malondialdehyde (MDA), nitric oxide (NO), and 8-hydroxy-2′-deoxyguanosine (8OHdG). Moreover, CLEE positively affected oxidative stress parameters in plasma and thwarted the depletion of hepatorenal ATP content by thioacetamide (TAA). Furthermore, treatment of rats with CLEE alleviated the significant increase in plasma liver enzymes, kidney function parameters, and inflammatory markers. The protective effect of CLEE was confirmed by a histopathological study of the liver and kidney. Our results proposed that CLEE may reduce TAA-hepatorenal toxicity via its antioxidant and anti-inflammatory properties suppressing oxidative stress.
AB - Cyperus species represent a group of cosmopolitan plants used in folk medicine to treat several diseases. In the current study, the phytochemical profile of Cyperus laevigatus ethanolic extract (CLEE) was assessed using UPLC-QTOF–MS/MS. The protective effect of CLEE at 50 and 100 mg /kg body weight (b.w.) was evaluated on hepatorenal injuries induced by thioacetamide (100 mg/kg) via investigation of the extract’s effects on oxidative stress, inflammatory markers and histopathological changes in the liver and kidney. UPLC-QTOF–MS/MS analysis of CLEE resulted in the identification of 94 compounds, including organic and phenolic acids, flavones, aurones, and fatty acids. CLEE improved the antioxidant status in the liver and kidney, as manifested by enhancement of reduced glutathione (GSH) and coenzyme Q10 (CoQ10), in addition to the reduction in malondialdehyde (MDA), nitric oxide (NO), and 8-hydroxy-2′-deoxyguanosine (8OHdG). Moreover, CLEE positively affected oxidative stress parameters in plasma and thwarted the depletion of hepatorenal ATP content by thioacetamide (TAA). Furthermore, treatment of rats with CLEE alleviated the significant increase in plasma liver enzymes, kidney function parameters, and inflammatory markers. The protective effect of CLEE was confirmed by a histopathological study of the liver and kidney. Our results proposed that CLEE may reduce TAA-hepatorenal toxicity via its antioxidant and anti-inflammatory properties suppressing oxidative stress.
KW - aurones
KW - flavonoids
KW - hepatorenal injuries
KW - histopathology
KW - inflammation markers
KW - oxidative stress
KW - smooth flatsedge
UR - http://www.scopus.com/inward/record.url?scp=85139813049&partnerID=8YFLogxK
U2 - 10.3390/molecules27196470
DO - 10.3390/molecules27196470
M3 - Article
VL - 27
JO - Molecules
JF - Molecules
SN - 1420-3049
IS - 19
M1 - 6470
ER -