Details
Original language | English |
---|---|
Pages (from-to) | 135-145 |
Number of pages | 11 |
Journal | Proceedings of SPIE - The International Society for Optical Engineering |
Volume | 2141 |
Publication status | Published - 26 May 1994 |
Externally published | Yes |
Event | Spectroscopic Characterization Techniques for Semiconductor Technology V 1994 - Los Angeles, United States Duration: 23 Jan 1994 → 29 Jan 1994 |
Abstract
The preparation of atomically sharp Interfaces forthe SiGe system is of remarkableinterest forthepreparation of ultrathin layers and superlattices. We investigated the Influence of the molecular beamepitaxy (MBE)-growth conditions on the properties of five monolayers of germanium, embedded In a(001) silicon matrix for a conventional as well as an antimonymediated growth In the temperatureregion from 300°C to 450°C. The layers were analyzed by electroreflectance (ER), Ramanspectroscopy and transmission electron microscopy (rEM); they show corresponding results for allthree methods of investigation.For growth without antimony, a tendency towards segregationinduced alloying with Increasinggrowth temperatures was observed.Antimony-mediated growth experiments show that the surfactant is able to improve the bulkcharacter of the germannim layer at higher temperatures only While ft does not significantly infkjencethe layer growth at lower temperatures. Among all Investigated growth conditions we found the bestsharpness of the germanium layer Intedace for the antimonymediated growth at 450°C.A thermal treatment after growth at Increasing temperatures Increased the alloying by anInterdiffuslon of Si and Ge as IndiCated by Raman measurements. In ER we observed a vanishing ofthe GeIlke transitions after a treatment at temperatures between 600°C and 700°C for 15 rrinutes.
ASJC Scopus subject areas
- Materials Science(all)
- Electronic, Optical and Magnetic Materials
- Physics and Astronomy(all)
- Condensed Matter Physics
- Computer Science(all)
- Computer Science Applications
- Mathematics(all)
- Applied Mathematics
- Engineering(all)
- Electrical and Electronic Engineering
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Proceedings of SPIE - The International Society for Optical Engineering, Vol. 2141, 26.05.1994, p. 135-145.
Research output: Contribution to journal › Conference article › Research › peer review
}
TY - JOUR
T1 - Characterization of very thin MBEgrown Ge epilayers on (001)Si
AU - Kissinger, W.
AU - Osten, H. J.
AU - Lippert, G.
AU - Dietrich, B.
AU - Bugiel, E.
PY - 1994/5/26
Y1 - 1994/5/26
N2 - The preparation of atomically sharp Interfaces forthe SiGe system is of remarkableinterest forthepreparation of ultrathin layers and superlattices. We investigated the Influence of the molecular beamepitaxy (MBE)-growth conditions on the properties of five monolayers of germanium, embedded In a(001) silicon matrix for a conventional as well as an antimonymediated growth In the temperatureregion from 300°C to 450°C. The layers were analyzed by electroreflectance (ER), Ramanspectroscopy and transmission electron microscopy (rEM); they show corresponding results for allthree methods of investigation.For growth without antimony, a tendency towards segregationinduced alloying with Increasinggrowth temperatures was observed.Antimony-mediated growth experiments show that the surfactant is able to improve the bulkcharacter of the germannim layer at higher temperatures only While ft does not significantly infkjencethe layer growth at lower temperatures. Among all Investigated growth conditions we found the bestsharpness of the germanium layer Intedace for the antimonymediated growth at 450°C.A thermal treatment after growth at Increasing temperatures Increased the alloying by anInterdiffuslon of Si and Ge as IndiCated by Raman measurements. In ER we observed a vanishing ofthe GeIlke transitions after a treatment at temperatures between 600°C and 700°C for 15 rrinutes.
AB - The preparation of atomically sharp Interfaces forthe SiGe system is of remarkableinterest forthepreparation of ultrathin layers and superlattices. We investigated the Influence of the molecular beamepitaxy (MBE)-growth conditions on the properties of five monolayers of germanium, embedded In a(001) silicon matrix for a conventional as well as an antimonymediated growth In the temperatureregion from 300°C to 450°C. The layers were analyzed by electroreflectance (ER), Ramanspectroscopy and transmission electron microscopy (rEM); they show corresponding results for allthree methods of investigation.For growth without antimony, a tendency towards segregationinduced alloying with Increasinggrowth temperatures was observed.Antimony-mediated growth experiments show that the surfactant is able to improve the bulkcharacter of the germannim layer at higher temperatures only While ft does not significantly infkjencethe layer growth at lower temperatures. Among all Investigated growth conditions we found the bestsharpness of the germanium layer Intedace for the antimonymediated growth at 450°C.A thermal treatment after growth at Increasing temperatures Increased the alloying by anInterdiffuslon of Si and Ge as IndiCated by Raman measurements. In ER we observed a vanishing ofthe GeIlke transitions after a treatment at temperatures between 600°C and 700°C for 15 rrinutes.
UR - http://www.scopus.com/inward/record.url?scp=77956766488&partnerID=8YFLogxK
U2 - 10.1117/12.176847
DO - 10.1117/12.176847
M3 - Conference article
AN - SCOPUS:77956766488
VL - 2141
SP - 135
EP - 145
JO - Proceedings of SPIE - The International Society for Optical Engineering
JF - Proceedings of SPIE - The International Society for Optical Engineering
SN - 0277-786X
T2 - Spectroscopic Characterization Techniques for Semiconductor Technology V 1994
Y2 - 23 January 1994 through 29 January 1994
ER -