Central Tethyan platform-top hypoxia during Oceanic Anoxic Event 1a

Research output: Contribution to journalArticleResearchpeer review

Authors

External Research Organisations

  • Ruhr-Universität Bochum
  • Aarhus University
  • Max Planck Institute for Chemistry (Otto Hahn Institute)
View graph of relations

Details

Original languageEnglish
Pages (from-to)1327-1344
Number of pages18
JournalClimate of the past
Volume15
Issue number4
Early online date18 Jul 2019
Publication statusPublished - 2019

Abstract

Short-term hypoxia in epeiric water masses is a common phenomenon of modern marine environments and causes mass mortality in coastal marine ecosystems. Here, we test the hypothesis that during the early Aptian, platform-top hypoxia temporarily established in some of the vast epeiric seas of the central Tethys and caused, combined with other stressors, significant changes in reefal ecosystems. Potentially interesting target examples include time intervals characterized by the demise of lower Aptian rudist-coral communities and the establishment of microencruster facies, as previously described from the central and southern Tethys and from the proto-North Atlantic domain. These considerations are relevant as previous work has predominantly focused on early Aptian basinal anoxia in the context of Oceanic Anoxic Event (OAE) 1a, whereas the potential expansion of the oxygen minimum zone (OMZ) in coeval shallow-water environments is underexplored. Wellknown patterns in the δ13C record during OAE 1a allow for a sufficiently time-resolved correlation with previously studied locations and assignment to chemostratigraphic segments. This paper presents and critically discusses the outcome of a multi-proxy study (e.g., rare earth elements (REEs), U isotopes, and redox-sensitive trace elements) applied to lower Aptian shallow-water carbonates today exposed in the Kanfanar quarry in Istria, Croatia. These rocks were deposited on an extensive, isolated high in the central Tethys surrounded by hemipelagic basins. Remarkably, during chemostratigraphic segment C2, the depletion of redox-sensitive trace elements As, V, Mo, and U in platform carbonates, deposited in normal marine oxic waters, record the first occurrence of basinal, organic-rich sediment deposition in which these elements are enriched. During the C3 segment, seawater oxygen depletion established on the platform top as indicated by the patterns in Ce=Ce∗ and U isotopes. Shifts in redox-sensitive proxies coincide with the expansion of microencruster facies. Segment C4 witnesses the return to normal marine reefal faunas on the platform top and is characterized by patterns in redox-sensitive proxies typical of normal marine dissolved oxygen levels. It remains unclear, however, if platform-top hypoxia resulted from the expansion and upwelling of basinal, oxygen-depleted water masses or if spatially isolated, shallow hypoxic water bodies formed on the platform. Data shown here are relevant as they shed light on the driving mechanisms that control poorly understood faunal patterns during OAE 1a in the neritic realm and provide evidence on the intricate relation between basinal and platform-top water masses.

ASJC Scopus subject areas

Sustainable Development Goals

Cite this

Central Tethyan platform-top hypoxia during Oceanic Anoxic Event 1a. / Hueter, Alexander; Huck, Stefan; Bodin, Stéphane et al.
In: Climate of the past, Vol. 15, No. 4, 2019, p. 1327-1344.

Research output: Contribution to journalArticleResearchpeer review

Hueter A, Huck S, Bodin S, Heimhofer U, Weyer S, Jochum KP et al. Central Tethyan platform-top hypoxia during Oceanic Anoxic Event 1a. Climate of the past. 2019;15(4):1327-1344. Epub 2019 Jul 18. doi: 10.5194/cp-15-1327-2019, 10.15488/5220
Hueter, Alexander ; Huck, Stefan ; Bodin, Stéphane et al. / Central Tethyan platform-top hypoxia during Oceanic Anoxic Event 1a. In: Climate of the past. 2019 ; Vol. 15, No. 4. pp. 1327-1344.
Download
@article{771d6904ff014c7d83f233bbd2ec3abc,
title = "Central Tethyan platform-top hypoxia during Oceanic Anoxic Event 1a",
abstract = "Short-term hypoxia in epeiric water masses is a common phenomenon of modern marine environments and causes mass mortality in coastal marine ecosystems. Here, we test the hypothesis that during the early Aptian, platform-top hypoxia temporarily established in some of the vast epeiric seas of the central Tethys and caused, combined with other stressors, significant changes in reefal ecosystems. Potentially interesting target examples include time intervals characterized by the demise of lower Aptian rudist-coral communities and the establishment of microencruster facies, as previously described from the central and southern Tethys and from the proto-North Atlantic domain. These considerations are relevant as previous work has predominantly focused on early Aptian basinal anoxia in the context of Oceanic Anoxic Event (OAE) 1a, whereas the potential expansion of the oxygen minimum zone (OMZ) in coeval shallow-water environments is underexplored. Wellknown patterns in the δ13C record during OAE 1a allow for a sufficiently time-resolved correlation with previously studied locations and assignment to chemostratigraphic segments. This paper presents and critically discusses the outcome of a multi-proxy study (e.g., rare earth elements (REEs), U isotopes, and redox-sensitive trace elements) applied to lower Aptian shallow-water carbonates today exposed in the Kanfanar quarry in Istria, Croatia. These rocks were deposited on an extensive, isolated high in the central Tethys surrounded by hemipelagic basins. Remarkably, during chemostratigraphic segment C2, the depletion of redox-sensitive trace elements As, V, Mo, and U in platform carbonates, deposited in normal marine oxic waters, record the first occurrence of basinal, organic-rich sediment deposition in which these elements are enriched. During the C3 segment, seawater oxygen depletion established on the platform top as indicated by the patterns in Ce=Ce∗ and U isotopes. Shifts in redox-sensitive proxies coincide with the expansion of microencruster facies. Segment C4 witnesses the return to normal marine reefal faunas on the platform top and is characterized by patterns in redox-sensitive proxies typical of normal marine dissolved oxygen levels. It remains unclear, however, if platform-top hypoxia resulted from the expansion and upwelling of basinal, oxygen-depleted water masses or if spatially isolated, shallow hypoxic water bodies formed on the platform. Data shown here are relevant as they shed light on the driving mechanisms that control poorly understood faunal patterns during OAE 1a in the neritic realm and provide evidence on the intricate relation between basinal and platform-top water masses.",
author = "Alexander Hueter and Stefan Huck and St{\'e}phane Bodin and Ulrich Heimhofer and Stefan Weyer and Jochum, {Klaus P.} and Adrian Immenhauser",
note = "Funding information: Financial support. This research has been supported by the Deutsche Forschungsgemeinschaft (grant no. IM44/19-1 and HU2258/3-1). Acknowledgements. We thank Nadja Pierau, Yvonne R{\"o}bbert, Annika Neddermeyer, and Lena Steinmann (Institute of Geology, Leibniz University Hannover, Germany) for their advice in uranium geochemistry and support in the laboratory. Special thanks to Brigitte Stoll and Ulrike Weis (Max Planck Institute for Chemistry, Mainz, Germany) for preparing the LA-ICP-MS measurements. We also thank the handling editor, Yannick Donnadieu, and Thomas Al-geo, Helmut Weissert, and Anton Husinec for their constructive reviews and comments. We acknowledge support by the DFG Open-Access Publication Funds of the Ruhr-Universit{\"a}t Bochum.",
year = "2019",
doi = "10.5194/cp-15-1327-2019",
language = "English",
volume = "15",
pages = "1327--1344",
journal = "Climate of the past",
issn = "1814-9324",
publisher = "European Geosciences Union",
number = "4",

}

Download

TY - JOUR

T1 - Central Tethyan platform-top hypoxia during Oceanic Anoxic Event 1a

AU - Hueter, Alexander

AU - Huck, Stefan

AU - Bodin, Stéphane

AU - Heimhofer, Ulrich

AU - Weyer, Stefan

AU - Jochum, Klaus P.

AU - Immenhauser, Adrian

N1 - Funding information: Financial support. This research has been supported by the Deutsche Forschungsgemeinschaft (grant no. IM44/19-1 and HU2258/3-1). Acknowledgements. We thank Nadja Pierau, Yvonne Röbbert, Annika Neddermeyer, and Lena Steinmann (Institute of Geology, Leibniz University Hannover, Germany) for their advice in uranium geochemistry and support in the laboratory. Special thanks to Brigitte Stoll and Ulrike Weis (Max Planck Institute for Chemistry, Mainz, Germany) for preparing the LA-ICP-MS measurements. We also thank the handling editor, Yannick Donnadieu, and Thomas Al-geo, Helmut Weissert, and Anton Husinec for their constructive reviews and comments. We acknowledge support by the DFG Open-Access Publication Funds of the Ruhr-Universität Bochum.

PY - 2019

Y1 - 2019

N2 - Short-term hypoxia in epeiric water masses is a common phenomenon of modern marine environments and causes mass mortality in coastal marine ecosystems. Here, we test the hypothesis that during the early Aptian, platform-top hypoxia temporarily established in some of the vast epeiric seas of the central Tethys and caused, combined with other stressors, significant changes in reefal ecosystems. Potentially interesting target examples include time intervals characterized by the demise of lower Aptian rudist-coral communities and the establishment of microencruster facies, as previously described from the central and southern Tethys and from the proto-North Atlantic domain. These considerations are relevant as previous work has predominantly focused on early Aptian basinal anoxia in the context of Oceanic Anoxic Event (OAE) 1a, whereas the potential expansion of the oxygen minimum zone (OMZ) in coeval shallow-water environments is underexplored. Wellknown patterns in the δ13C record during OAE 1a allow for a sufficiently time-resolved correlation with previously studied locations and assignment to chemostratigraphic segments. This paper presents and critically discusses the outcome of a multi-proxy study (e.g., rare earth elements (REEs), U isotopes, and redox-sensitive trace elements) applied to lower Aptian shallow-water carbonates today exposed in the Kanfanar quarry in Istria, Croatia. These rocks were deposited on an extensive, isolated high in the central Tethys surrounded by hemipelagic basins. Remarkably, during chemostratigraphic segment C2, the depletion of redox-sensitive trace elements As, V, Mo, and U in platform carbonates, deposited in normal marine oxic waters, record the first occurrence of basinal, organic-rich sediment deposition in which these elements are enriched. During the C3 segment, seawater oxygen depletion established on the platform top as indicated by the patterns in Ce=Ce∗ and U isotopes. Shifts in redox-sensitive proxies coincide with the expansion of microencruster facies. Segment C4 witnesses the return to normal marine reefal faunas on the platform top and is characterized by patterns in redox-sensitive proxies typical of normal marine dissolved oxygen levels. It remains unclear, however, if platform-top hypoxia resulted from the expansion and upwelling of basinal, oxygen-depleted water masses or if spatially isolated, shallow hypoxic water bodies formed on the platform. Data shown here are relevant as they shed light on the driving mechanisms that control poorly understood faunal patterns during OAE 1a in the neritic realm and provide evidence on the intricate relation between basinal and platform-top water masses.

AB - Short-term hypoxia in epeiric water masses is a common phenomenon of modern marine environments and causes mass mortality in coastal marine ecosystems. Here, we test the hypothesis that during the early Aptian, platform-top hypoxia temporarily established in some of the vast epeiric seas of the central Tethys and caused, combined with other stressors, significant changes in reefal ecosystems. Potentially interesting target examples include time intervals characterized by the demise of lower Aptian rudist-coral communities and the establishment of microencruster facies, as previously described from the central and southern Tethys and from the proto-North Atlantic domain. These considerations are relevant as previous work has predominantly focused on early Aptian basinal anoxia in the context of Oceanic Anoxic Event (OAE) 1a, whereas the potential expansion of the oxygen minimum zone (OMZ) in coeval shallow-water environments is underexplored. Wellknown patterns in the δ13C record during OAE 1a allow for a sufficiently time-resolved correlation with previously studied locations and assignment to chemostratigraphic segments. This paper presents and critically discusses the outcome of a multi-proxy study (e.g., rare earth elements (REEs), U isotopes, and redox-sensitive trace elements) applied to lower Aptian shallow-water carbonates today exposed in the Kanfanar quarry in Istria, Croatia. These rocks were deposited on an extensive, isolated high in the central Tethys surrounded by hemipelagic basins. Remarkably, during chemostratigraphic segment C2, the depletion of redox-sensitive trace elements As, V, Mo, and U in platform carbonates, deposited in normal marine oxic waters, record the first occurrence of basinal, organic-rich sediment deposition in which these elements are enriched. During the C3 segment, seawater oxygen depletion established on the platform top as indicated by the patterns in Ce=Ce∗ and U isotopes. Shifts in redox-sensitive proxies coincide with the expansion of microencruster facies. Segment C4 witnesses the return to normal marine reefal faunas on the platform top and is characterized by patterns in redox-sensitive proxies typical of normal marine dissolved oxygen levels. It remains unclear, however, if platform-top hypoxia resulted from the expansion and upwelling of basinal, oxygen-depleted water masses or if spatially isolated, shallow hypoxic water bodies formed on the platform. Data shown here are relevant as they shed light on the driving mechanisms that control poorly understood faunal patterns during OAE 1a in the neritic realm and provide evidence on the intricate relation between basinal and platform-top water masses.

UR - http://www.scopus.com/inward/record.url?scp=85069522469&partnerID=8YFLogxK

U2 - 10.5194/cp-15-1327-2019

DO - 10.5194/cp-15-1327-2019

M3 - Article

AN - SCOPUS:85069522469

VL - 15

SP - 1327

EP - 1344

JO - Climate of the past

JF - Climate of the past

SN - 1814-9324

IS - 4

ER -

By the same author(s)