Details
Original language | English |
---|---|
Article number | 107720 |
Journal | Soil Biology and Biochemistry |
Volume | 142 |
Early online date | 17 Jan 2020 |
Publication status | Published - Mar 2020 |
Externally published | Yes |
Abstract
The impact of increasing amounts of labile C input on priming effects (PE) on soil organic matter (SOM) mineralization remains unclear, particularly under anoxic conditions and under high C input common in microbial hotspots. PE and their mechanisms were investigated by a 60-day incubation of three flooded paddy soils amended with13C-labeled glucose equivalent to 50–500% of microbial biomass C (MBC). PE (14–55% of unamended soil) peaked at moderate glucose addition rates (i.e., 50–300% of MBC). Glucose addition above 300% of MBC suppressed SOM mineralization but intensified microbial N acquisition, which contradicted the common PE mechanism of accelerating SOM decomposition for N-supply (frequently termed as “N mining”). Particularly at glucose input rate higher than 3 g kg−1 (i.e., 300–500% of MBC), mineral N content dropped on day 2 close to zero (1.1–2.5 mg N kg−1) because of microbial N immobilization. To cope with the N limitation, microorganisms greatly increased N-acetyl glucosaminidase and leucine aminopeptidase activities, while SOM decomposition decreased. Several discrete peaks of glucose-derived CO2 (contributing >80% to total CO2) were observed between days 13–30 under high glucose input (300–500% of MBC), concurrently with CH4 peaks. Such CO2 dynamics was distinct from the common exponential decay pattern, implicating the recycling and mineralization of 13C-enriched microbial necromass driven by glucose addition. Therefore, N recycling from necromass was hypothesized as a major mechanism to alleviate microbial N deficiency without SOM priming under excess labile C input. Compound-specific 13C-PLFA confirmed the redistribution of glucose-derived C among microbial groups, i.e., necromass recycling. Following glucose input, more than 4/5 of total 13C-PLFA was in the gram-negative and some non-specific bacteria, suggesting these microorganisms as r-strategists capable of rapidly utilizing the most labile C. However, their 13C-PLFA content decreased by 70% after 60 days, probably as a result of death of these r-strategists. On the contrary, the 13C-PLFA in gram-positive bacteria, actinomycetes and fungi (K-strategists) was initially minimal but increased by 0.5–5 folds between days 2 and 60. Consequently, the necromass of dead r-strategists provided a high-quality C–N source to the K-strategists. We conclude that under severe C excess, N recycling from necromass is a much more efficient microbial strategy to cover the acute N demand than N acquisition from the recalcitrant SOM.
Keywords
- Compound-specific C-PLFA analysis, Glucose mineralization, Necromass recycling, Priming effects, Soil carbon, Stoichiometric imbalance
ASJC Scopus subject areas
- Immunology and Microbiology(all)
- Microbiology
- Agricultural and Biological Sciences(all)
- Soil Science
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Soil Biology and Biochemistry, Vol. 142, 107720, 03.2020.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Carbon and nitrogen recycling from microbial necromass to cope with C:N stoichiometric imbalance by priming
AU - Cui, Jun
AU - Zhu, Zhenke
AU - Xu, Xingliang
AU - Liu, Shoulong
AU - Jones, Davey L.
AU - Kuzyakov, Yakov
AU - Shibistova, Olga
AU - Wu, Jinshui
AU - Ge, Tida
N1 - Funding information: The study was supported by the National Key Research and Development Program of China (2017YFD0800104), the National Natural Science Foundation of China (41430860, 41771337, 41977093 and 31872695), State Key Laboratory of Organic Geochemistry, GIGCAS (SKLOG-201728), Hunan Province Base for Scientific and Technological Innovation Cooperation (2018WK4012), the Youth Innovation Team Project of Institute of Subtropical Agriculture, Chinese Academy of Sciences (2017QNCXTD_GTD), NSFC-RFBR joint project (N 19-54-53026) and Innovation Groups of National Natural Science Foundation of Hunan Province (2019JJ10003). We thank the Public Service Technology Center, Institute of Subtropical Agriculture, Chinese Academy of Sciences for technical assistance. The publication was supported by the Government Program of Competitive Growth of Kazan Federal University and with the support of the “RUDN University program 5–100.” The study was supported by the National Key Research and Development Program of China ( 2017YFD0800104 ), the National Natural Science Foundation of China ( 41430860 , 41771337 , 41977093 and 31872695 ), State Key Laboratory of Organic Geochemistry , GIGCAS ( SKLOG-201728 ), Hunan Province Base for Scientific and Technological Innovation Cooperation ( 2018WK4012 ), the Youth Innovation Team Project of Institute of Subtropical Agriculture, Chinese Academy of Sciences ( 2017QNCXTD_GTD ), NSFC- RFBR joint project ( N 19-54-53026 ) and Innovation Groups of National Natural Science Foundation of Hunan Province ( 2019JJ10003 ). We thank the Public Service Technology Center, Institute of Subtropical Agriculture, Chinese Academy of Sciences for technical assistance. The publication was supported by the Government Program of Competitive Growth of Kazan Federal University and with the support of the “RUDN University program 5–100.”
PY - 2020/3
Y1 - 2020/3
N2 - The impact of increasing amounts of labile C input on priming effects (PE) on soil organic matter (SOM) mineralization remains unclear, particularly under anoxic conditions and under high C input common in microbial hotspots. PE and their mechanisms were investigated by a 60-day incubation of three flooded paddy soils amended with13C-labeled glucose equivalent to 50–500% of microbial biomass C (MBC). PE (14–55% of unamended soil) peaked at moderate glucose addition rates (i.e., 50–300% of MBC). Glucose addition above 300% of MBC suppressed SOM mineralization but intensified microbial N acquisition, which contradicted the common PE mechanism of accelerating SOM decomposition for N-supply (frequently termed as “N mining”). Particularly at glucose input rate higher than 3 g kg−1 (i.e., 300–500% of MBC), mineral N content dropped on day 2 close to zero (1.1–2.5 mg N kg−1) because of microbial N immobilization. To cope with the N limitation, microorganisms greatly increased N-acetyl glucosaminidase and leucine aminopeptidase activities, while SOM decomposition decreased. Several discrete peaks of glucose-derived CO2 (contributing >80% to total CO2) were observed between days 13–30 under high glucose input (300–500% of MBC), concurrently with CH4 peaks. Such CO2 dynamics was distinct from the common exponential decay pattern, implicating the recycling and mineralization of 13C-enriched microbial necromass driven by glucose addition. Therefore, N recycling from necromass was hypothesized as a major mechanism to alleviate microbial N deficiency without SOM priming under excess labile C input. Compound-specific 13C-PLFA confirmed the redistribution of glucose-derived C among microbial groups, i.e., necromass recycling. Following glucose input, more than 4/5 of total 13C-PLFA was in the gram-negative and some non-specific bacteria, suggesting these microorganisms as r-strategists capable of rapidly utilizing the most labile C. However, their 13C-PLFA content decreased by 70% after 60 days, probably as a result of death of these r-strategists. On the contrary, the 13C-PLFA in gram-positive bacteria, actinomycetes and fungi (K-strategists) was initially minimal but increased by 0.5–5 folds between days 2 and 60. Consequently, the necromass of dead r-strategists provided a high-quality C–N source to the K-strategists. We conclude that under severe C excess, N recycling from necromass is a much more efficient microbial strategy to cover the acute N demand than N acquisition from the recalcitrant SOM.
AB - The impact of increasing amounts of labile C input on priming effects (PE) on soil organic matter (SOM) mineralization remains unclear, particularly under anoxic conditions and under high C input common in microbial hotspots. PE and their mechanisms were investigated by a 60-day incubation of three flooded paddy soils amended with13C-labeled glucose equivalent to 50–500% of microbial biomass C (MBC). PE (14–55% of unamended soil) peaked at moderate glucose addition rates (i.e., 50–300% of MBC). Glucose addition above 300% of MBC suppressed SOM mineralization but intensified microbial N acquisition, which contradicted the common PE mechanism of accelerating SOM decomposition for N-supply (frequently termed as “N mining”). Particularly at glucose input rate higher than 3 g kg−1 (i.e., 300–500% of MBC), mineral N content dropped on day 2 close to zero (1.1–2.5 mg N kg−1) because of microbial N immobilization. To cope with the N limitation, microorganisms greatly increased N-acetyl glucosaminidase and leucine aminopeptidase activities, while SOM decomposition decreased. Several discrete peaks of glucose-derived CO2 (contributing >80% to total CO2) were observed between days 13–30 under high glucose input (300–500% of MBC), concurrently with CH4 peaks. Such CO2 dynamics was distinct from the common exponential decay pattern, implicating the recycling and mineralization of 13C-enriched microbial necromass driven by glucose addition. Therefore, N recycling from necromass was hypothesized as a major mechanism to alleviate microbial N deficiency without SOM priming under excess labile C input. Compound-specific 13C-PLFA confirmed the redistribution of glucose-derived C among microbial groups, i.e., necromass recycling. Following glucose input, more than 4/5 of total 13C-PLFA was in the gram-negative and some non-specific bacteria, suggesting these microorganisms as r-strategists capable of rapidly utilizing the most labile C. However, their 13C-PLFA content decreased by 70% after 60 days, probably as a result of death of these r-strategists. On the contrary, the 13C-PLFA in gram-positive bacteria, actinomycetes and fungi (K-strategists) was initially minimal but increased by 0.5–5 folds between days 2 and 60. Consequently, the necromass of dead r-strategists provided a high-quality C–N source to the K-strategists. We conclude that under severe C excess, N recycling from necromass is a much more efficient microbial strategy to cover the acute N demand than N acquisition from the recalcitrant SOM.
KW - Compound-specific C-PLFA analysis
KW - Glucose mineralization
KW - Necromass recycling
KW - Priming effects
KW - Soil carbon
KW - Stoichiometric imbalance
UR - http://www.scopus.com/inward/record.url?scp=85078001183&partnerID=8YFLogxK
U2 - 10.1016/j.soilbio.2020.107720
DO - 10.1016/j.soilbio.2020.107720
M3 - Article
AN - SCOPUS:85078001183
VL - 142
JO - Soil Biology and Biochemistry
JF - Soil Biology and Biochemistry
SN - 0038-0717
M1 - 107720
ER -