Loading [MathJax]/extensions/tex2jax.js

Capacitive sensing of test mass motion with nanometer precision over millimeter-wide sensing gaps for space-borne gravitational reference sensors

Research output: Contribution to journalArticleResearch

Authors

  • LISA Pathfinder Collaboration
  • D. Mance
  • Victoria Martín
  • L. Martin-Polo

External Research Organisations

  • Max Planck Institute for Gravitational Physics (Albert Einstein Institute)
  • European Space Agency (ESA)
  • Airbus Defence and Space GmbH
  • University of Florence (UniFi)
  • ETH Zurich
  • CONICET
  • Autonomous University of Barcelona (UAB)
  • Institute of Space Studies of Catalonia (IEEC)
  • European Space Astronomy Centre
  • Observatoire de Paris (OBSPARIS)
  • European Space Research and Technology Centre (ESTEC)
  • European Space Operation Center (ESOC)
  • Universidade de Sao Paulo
  • University of Glasgow
  • University of Trento
  • Universitat Politècnica de Catalunya
  • Max Planck Institute of Quantum Optics (MPQ)
  • OHB Italia SpA
  • NASA Goddard Space Flight Center (NASA-GSFC)
  • Imperial College London
  • Airbus Group
  • Istituto Nazionale di Fisica Nucleare (INFN)
Plum Print visual indicator of research metrics
  • Citations
    • Citation Indexes: 2
    • Policy Citations: 1
  • Captures
    • Readers: 34
see details

Details

Original languageEnglish
Article number062004
Number of pages11
JournalPhysical Review D
Volume96
Issue number6
Publication statusPublished - 26 Sept 2017

Abstract

We report on the performance of the capacitive gap-sensing system of the Gravitational Reference Sensor on board the LISA Pathfinder spacecraft. From in-flight measurements, the system has demonstrated a performance, down to 1 mHz, that is ranging between 0.7 and 1.8 aF Hz-1/2. That translates into a sensing noise of the test mass motion within 1.2 and 2.4 nm Hz-1/2 in displacement and within 83 and 170 nrad Hz-1/2 in rotation. This matches the performance goals for LISA Pathfinder, and it allows the successful implementation of the gravitational waves observatory LISA. A 1/f tail has been observed for frequencies below 1 mHz, the tail has been investigated in detail with dedicated in-flight measurements, and a model is presented in the paper. A projection of such noise to frequencies below 0.1 mHz shows that an improvement of performance at those frequencies is desirable for the next generation of gravitational reference sensors for space-borne gravitational waves observation.

ASJC Scopus subject areas

Cite this

Capacitive sensing of test mass motion with nanometer precision over millimeter-wide sensing gaps for space-borne gravitational reference sensors. / LISA Pathfinder Collaboration; Mance, D.; Martín, Victoria et al.
In: Physical Review D, Vol. 96, No. 6, 062004, 26.09.2017.

Research output: Contribution to journalArticleResearch

LISA Pathfinder Collaboration, Mance, D, Martín, V, Martin-Polo, L, Martino, J, Martin-Porqueras, F, Madden, S, Mateos, I, McNamara, PW, Mendes, J, Mendes, LW, Meshksar, N, Nofrarias, M, Paczkowski, S, Perreur-Lloyd, M, Petiteau, A, Pivato, P, Plagnol, E, Prat, P, Ragnit, U, Ramos-Castro, J, Reichel, J, Robertson, DI, Rozemeijer, H, Rivas, F, Russano, G, Sarra, P, Schleicher, A, Slutsky, J, Sopuerta, CF, Stanga, R, Sumner, TJ, Texier, D, Thorpe, JI, Trenkel, C, Tröbs, M, Vetrugno, D, Zambotti, A, Zanoni, C, Ziegler, T & Zweifel, P 2017, 'Capacitive sensing of test mass motion with nanometer precision over millimeter-wide sensing gaps for space-borne gravitational reference sensors', Physical Review D, vol. 96, no. 6, 062004. https://doi.org/10.1103/PhysRevD.96.062004
LISA Pathfinder Collaboration, Mance, D., Martín, V., Martin-Polo, L., Martino, J., Martin-Porqueras, F., Madden, S., Mateos, I., McNamara, P. W., Mendes, J., Mendes, L. W., Meshksar, N., Nofrarias, M., Paczkowski, S., Perreur-Lloyd, M., Petiteau, A., Pivato, P., Plagnol, E., Prat, P., ... Zweifel, P. (2017). Capacitive sensing of test mass motion with nanometer precision over millimeter-wide sensing gaps for space-borne gravitational reference sensors. Physical Review D, 96(6), Article 062004. https://doi.org/10.1103/PhysRevD.96.062004
LISA Pathfinder Collaboration, Mance D, Martín V, Martin-Polo L, Martino J, Martin-Porqueras F et al. Capacitive sensing of test mass motion with nanometer precision over millimeter-wide sensing gaps for space-borne gravitational reference sensors. Physical Review D. 2017 Sept 26;96(6):062004. doi: 10.1103/PhysRevD.96.062004
Download
@article{0de8f3aa98fb42328954a50908486cde,
title = "Capacitive sensing of test mass motion with nanometer precision over millimeter-wide sensing gaps for space-borne gravitational reference sensors",
abstract = "We report on the performance of the capacitive gap-sensing system of the Gravitational Reference Sensor on board the LISA Pathfinder spacecraft. From in-flight measurements, the system has demonstrated a performance, down to 1 mHz, that is ranging between 0.7 and 1.8 aF Hz-1/2. That translates into a sensing noise of the test mass motion within 1.2 and 2.4 nm Hz-1/2 in displacement and within 83 and 170 nrad Hz-1/2 in rotation. This matches the performance goals for LISA Pathfinder, and it allows the successful implementation of the gravitational waves observatory LISA. A 1/f tail has been observed for frequencies below 1 mHz, the tail has been investigated in detail with dedicated in-flight measurements, and a model is presented in the paper. A projection of such noise to frequencies below 0.1 mHz shows that an improvement of performance at those frequencies is desirable for the next generation of gravitational reference sensors for space-borne gravitational waves observation.",
author = "{LISA Pathfinder Collaboration} and M. Armano and H. Audley and G. Auger and J. Baird and M. Bassan and P. Binetruy and M. Born and D. Bortoluzzi and N. Brandt and M. Caleno and A. Cavalleri and A. Cesarini and A. M. Cruise and K. Danzmann and {De Deus Silva}, M. and {De Rosa}, R. and {Di Fiore}, L. and I. Diepholz and G. Dixon and R. Dolesi and N. Dunbar and L. Ferraioli and V. Ferroni and E. D. Fitzsimons and R. Flatscher and M. Freschi and {Garc{\'i}a Marirrodriga}, C. and R. Gerndt and L. Gesa and F. Gibert and D. Giardini and R. Giusteri and A. Grado and C. Grimani and J. Grzymisch and I. Harrison and G. Heinzel and M. Hewitson and D. Hollington and D. Hoyland and M. Hueller and H. Inchausp{\'e} and O. Jennrich and P. Jetzer and B. Johlander and N. Karnesis and B. Kaune and N. Korsakova and C. J. Killow and J. A. Lobo and D. Mance and Victoria Mart{\'i}n and L. Martin-Polo and J. Martino and F. Martin-Porqueras and S. Madden and Ignacio Mateos and McNamara, {P. W.} and J. Mendes and Mendes, {Lucas W} and N. Meshksar and Miguel Nofrarias and S. Paczkowski and M. Perreur-Lloyd and A. Petiteau and P. Pivato and E. Plagnol and Pierre Prat and U. Ragnit and J. Ramos-Castro and J. Reichel and Robertson, {D. I.} and H. Rozemeijer and F. Rivas and G. Russano and P. Sarra and A. Schleicher and J. Slutsky and Sopuerta, {Carlos F.} and R. Stanga and Sumner, {Tim J.} and D. Texier and Thorpe, {J. I.} and Christian Trenkel and Michael Tr{\"o}bs and D. Vetrugno and A. Zambotti and Carlo Zanoni and T. Ziegler and Philipp Zweifel",
note = "Funding information: This work has been made possible by the LISA Pathfinder mission, which is part of the space-science program of the European Space Agency. The French contribution has been supported by CNES (Accord Specific de Projet No. CNES 1316634/CNRS 103747), the CNRS, the Observatoire de Paris, and the University Paris-Diderot. E. P. and H. I. would also like to acknowledge the financial support of the UnivEarthS Labex program at Sorbonne Paris Cit (Grants No. ANR-10-LABX-0023 and No. ANR-11-IDEX-0005-02). The Albert-Einstein-Institut acknowledges the support of the German Space Agency, DLR. The work is supported by the Federal Ministry for Economic Affairs and Energy based on a resolution of the German Bundestag (Grants No. FKZ 50OQ0501 and No. FKZ 50OQ1601). The Italian contribution has been supported by Agenzia Spaziale Italiana and Instituto Nazionale di Fisica Nucleare. The Spanish contribution has been supported by Contracts No. AYA2010-15709 (MICINN), No. ESP2013-47637-P, and No. ESP2015-67234-P (MINECO). M. N. acknowledges support from Fundacion General CSIC (Programa ComFuturo). F. R. acknowledges support from a Formacion de Personal Investigador (MINECO) contract. The Swiss contribution acknowledges the support of the Swiss Space Office via the PRODEX Programme of ESA. L. F. acknowledges the support of the Swiss National Science Foundation (Project No. 162449). The United Kingdom groups wish to acknowledge support from the United Kingdom Space Agency, the University of Glasgow, the University of Birmingham, Imperial College London, and the Scottish Universities Physics Alliance. N. K. would like to acknowledge the support of the Newton International Fellowship from the Royal Society. J. I. T. and J. S. acknowledge the support of NASA.",
year = "2017",
month = sep,
day = "26",
doi = "10.1103/PhysRevD.96.062004",
language = "English",
volume = "96",
journal = "Physical Review D",
issn = "2470-0010",
publisher = "American Institute of Physics",
number = "6",

}

Download

TY - JOUR

T1 - Capacitive sensing of test mass motion with nanometer precision over millimeter-wide sensing gaps for space-borne gravitational reference sensors

AU - LISA Pathfinder Collaboration

AU - Armano, M.

AU - Audley, H.

AU - Auger, G.

AU - Baird, J.

AU - Bassan, M.

AU - Binetruy, P.

AU - Born, M.

AU - Bortoluzzi, D.

AU - Brandt, N.

AU - Caleno, M.

AU - Cavalleri, A.

AU - Cesarini, A.

AU - Cruise, A. M.

AU - Danzmann, K.

AU - De Deus Silva, M.

AU - De Rosa, R.

AU - Di Fiore, L.

AU - Diepholz, I.

AU - Dixon, G.

AU - Dolesi, R.

AU - Dunbar, N.

AU - Ferraioli, L.

AU - Ferroni, V.

AU - Fitzsimons, E. D.

AU - Flatscher, R.

AU - Freschi, M.

AU - García Marirrodriga, C.

AU - Gerndt, R.

AU - Gesa, L.

AU - Gibert, F.

AU - Giardini, D.

AU - Giusteri, R.

AU - Grado, A.

AU - Grimani, C.

AU - Grzymisch, J.

AU - Harrison, I.

AU - Heinzel, G.

AU - Hewitson, M.

AU - Hollington, D.

AU - Hoyland, D.

AU - Hueller, M.

AU - Inchauspé, H.

AU - Jennrich, O.

AU - Jetzer, P.

AU - Johlander, B.

AU - Karnesis, N.

AU - Kaune, B.

AU - Korsakova, N.

AU - Killow, C. J.

AU - Lobo, J. A.

AU - Mance, D.

AU - Martín, Victoria

AU - Martin-Polo, L.

AU - Martino, J.

AU - Martin-Porqueras, F.

AU - Madden, S.

AU - Mateos, Ignacio

AU - McNamara, P. W.

AU - Mendes, J.

AU - Mendes, Lucas W

AU - Meshksar, N.

AU - Nofrarias, Miguel

AU - Paczkowski, S.

AU - Perreur-Lloyd, M.

AU - Petiteau, A.

AU - Pivato, P.

AU - Plagnol, E.

AU - Prat, Pierre

AU - Ragnit, U.

AU - Ramos-Castro, J.

AU - Reichel, J.

AU - Robertson, D. I.

AU - Rozemeijer, H.

AU - Rivas, F.

AU - Russano, G.

AU - Sarra, P.

AU - Schleicher, A.

AU - Slutsky, J.

AU - Sopuerta, Carlos F.

AU - Stanga, R.

AU - Sumner, Tim J.

AU - Texier, D.

AU - Thorpe, J. I.

AU - Trenkel, Christian

AU - Tröbs, Michael

AU - Vetrugno, D.

AU - Zambotti, A.

AU - Zanoni, Carlo

AU - Ziegler, T.

AU - Zweifel, Philipp

N1 - Funding information: This work has been made possible by the LISA Pathfinder mission, which is part of the space-science program of the European Space Agency. The French contribution has been supported by CNES (Accord Specific de Projet No. CNES 1316634/CNRS 103747), the CNRS, the Observatoire de Paris, and the University Paris-Diderot. E. P. and H. I. would also like to acknowledge the financial support of the UnivEarthS Labex program at Sorbonne Paris Cit (Grants No. ANR-10-LABX-0023 and No. ANR-11-IDEX-0005-02). The Albert-Einstein-Institut acknowledges the support of the German Space Agency, DLR. The work is supported by the Federal Ministry for Economic Affairs and Energy based on a resolution of the German Bundestag (Grants No. FKZ 50OQ0501 and No. FKZ 50OQ1601). The Italian contribution has been supported by Agenzia Spaziale Italiana and Instituto Nazionale di Fisica Nucleare. The Spanish contribution has been supported by Contracts No. AYA2010-15709 (MICINN), No. ESP2013-47637-P, and No. ESP2015-67234-P (MINECO). M. N. acknowledges support from Fundacion General CSIC (Programa ComFuturo). F. R. acknowledges support from a Formacion de Personal Investigador (MINECO) contract. The Swiss contribution acknowledges the support of the Swiss Space Office via the PRODEX Programme of ESA. L. F. acknowledges the support of the Swiss National Science Foundation (Project No. 162449). The United Kingdom groups wish to acknowledge support from the United Kingdom Space Agency, the University of Glasgow, the University of Birmingham, Imperial College London, and the Scottish Universities Physics Alliance. N. K. would like to acknowledge the support of the Newton International Fellowship from the Royal Society. J. I. T. and J. S. acknowledge the support of NASA.

PY - 2017/9/26

Y1 - 2017/9/26

N2 - We report on the performance of the capacitive gap-sensing system of the Gravitational Reference Sensor on board the LISA Pathfinder spacecraft. From in-flight measurements, the system has demonstrated a performance, down to 1 mHz, that is ranging between 0.7 and 1.8 aF Hz-1/2. That translates into a sensing noise of the test mass motion within 1.2 and 2.4 nm Hz-1/2 in displacement and within 83 and 170 nrad Hz-1/2 in rotation. This matches the performance goals for LISA Pathfinder, and it allows the successful implementation of the gravitational waves observatory LISA. A 1/f tail has been observed for frequencies below 1 mHz, the tail has been investigated in detail with dedicated in-flight measurements, and a model is presented in the paper. A projection of such noise to frequencies below 0.1 mHz shows that an improvement of performance at those frequencies is desirable for the next generation of gravitational reference sensors for space-borne gravitational waves observation.

AB - We report on the performance of the capacitive gap-sensing system of the Gravitational Reference Sensor on board the LISA Pathfinder spacecraft. From in-flight measurements, the system has demonstrated a performance, down to 1 mHz, that is ranging between 0.7 and 1.8 aF Hz-1/2. That translates into a sensing noise of the test mass motion within 1.2 and 2.4 nm Hz-1/2 in displacement and within 83 and 170 nrad Hz-1/2 in rotation. This matches the performance goals for LISA Pathfinder, and it allows the successful implementation of the gravitational waves observatory LISA. A 1/f tail has been observed for frequencies below 1 mHz, the tail has been investigated in detail with dedicated in-flight measurements, and a model is presented in the paper. A projection of such noise to frequencies below 0.1 mHz shows that an improvement of performance at those frequencies is desirable for the next generation of gravitational reference sensors for space-borne gravitational waves observation.

UR - http://www.scopus.com/inward/record.url?scp=85031693077&partnerID=8YFLogxK

U2 - 10.1103/PhysRevD.96.062004

DO - 10.1103/PhysRevD.96.062004

M3 - Article

VL - 96

JO - Physical Review D

JF - Physical Review D

SN - 2470-0010

IS - 6

M1 - 062004

ER -