Details
Original language | English |
---|---|
Pages (from-to) | 9033-9040 |
Number of pages | 8 |
Journal | Chemical science |
Volume | 14 |
Issue number | 34 |
Publication status | Published - 2 Aug 2023 |
Abstract
Organic materials offer great potential as electrodes for batteries due to their high theoretical capacity, flexible structural design, and easily accessible materials. However, one significant drawback of organic electrode materials is their tendency to dissolve in the electrolyte. Resazurin sodium salt (RSS) has demonstrated remarkable charge/discharge performance characterized by a voltage plateau and high capacity when utilized as a cathode in aqueous zinc-ion batteries (AZIBs). Unfortunately, the solubility of RSS as a sodium salt continues to pose challenges in AZIBs. In this study, we introduce an RSS-containing organic compound, triresazurin-triazine (TRT), with a porous structure prepared by a desalinization method from the RSS and 2,4,6-trichloro-1,3,5-triazine (TCT). This process retained active groups (carbonyl and nitroxide radical) while generating a highly conjugated structure, which not only inhibits the dissolution in the electrolyte, but also improves the electrical conductivity, enabling TRT to have excellent electrochemical properties. When evaluated as a cathode for AZIBs, TRT exhibits a high reversible capacity of 180 mA h g−1, exceptional rate performance (78 mA h g−1 under 2 A g−1), and excellent cycling stability with 65 mA h g−1 at 500 mA g−1 after 1000 cycles.
ASJC Scopus subject areas
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Chemical science, Vol. 14, No. 34, 02.08.2023, p. 9033-9040.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Boosting the zinc storage of a small-molecule organic cathode by a desalinization strategy
AU - Wang, Wei
AU - Tang, Ying
AU - Liu, Jun
AU - Li, Hongbao
AU - Wang, Rui
AU - Zhang, Longhai
AU - Liang, Fei
AU - Bai, Wei
AU - Zhang, Lin
AU - Zhang, Chaofeng
N1 - Funding Information: We are thankful for the financial support from the National Natural Science Foundation of China (52172173, 51872071), Natural Science Foundation of Anhui Province for Distinguished Young Scholars (2108085J25), Excellent Research and Innovation Team Project of Anhui Province (2022AH010001), Natural Science Foundation of Anhui Province (2208085QE130), Distinguished Youths Research Project of Anhui Province (2022AH020013), and the Open Fund of Guangdong Provincial Key Laboratory of Advance Energy Storage Materials (AESM202106). We acknowledge the High-performance Computing Platform of Anhui University for providing computing resources.
PY - 2023/8/2
Y1 - 2023/8/2
N2 - Organic materials offer great potential as electrodes for batteries due to their high theoretical capacity, flexible structural design, and easily accessible materials. However, one significant drawback of organic electrode materials is their tendency to dissolve in the electrolyte. Resazurin sodium salt (RSS) has demonstrated remarkable charge/discharge performance characterized by a voltage plateau and high capacity when utilized as a cathode in aqueous zinc-ion batteries (AZIBs). Unfortunately, the solubility of RSS as a sodium salt continues to pose challenges in AZIBs. In this study, we introduce an RSS-containing organic compound, triresazurin-triazine (TRT), with a porous structure prepared by a desalinization method from the RSS and 2,4,6-trichloro-1,3,5-triazine (TCT). This process retained active groups (carbonyl and nitroxide radical) while generating a highly conjugated structure, which not only inhibits the dissolution in the electrolyte, but also improves the electrical conductivity, enabling TRT to have excellent electrochemical properties. When evaluated as a cathode for AZIBs, TRT exhibits a high reversible capacity of 180 mA h g−1, exceptional rate performance (78 mA h g−1 under 2 A g−1), and excellent cycling stability with 65 mA h g−1 at 500 mA g−1 after 1000 cycles.
AB - Organic materials offer great potential as electrodes for batteries due to their high theoretical capacity, flexible structural design, and easily accessible materials. However, one significant drawback of organic electrode materials is their tendency to dissolve in the electrolyte. Resazurin sodium salt (RSS) has demonstrated remarkable charge/discharge performance characterized by a voltage plateau and high capacity when utilized as a cathode in aqueous zinc-ion batteries (AZIBs). Unfortunately, the solubility of RSS as a sodium salt continues to pose challenges in AZIBs. In this study, we introduce an RSS-containing organic compound, triresazurin-triazine (TRT), with a porous structure prepared by a desalinization method from the RSS and 2,4,6-trichloro-1,3,5-triazine (TCT). This process retained active groups (carbonyl and nitroxide radical) while generating a highly conjugated structure, which not only inhibits the dissolution in the electrolyte, but also improves the electrical conductivity, enabling TRT to have excellent electrochemical properties. When evaluated as a cathode for AZIBs, TRT exhibits a high reversible capacity of 180 mA h g−1, exceptional rate performance (78 mA h g−1 under 2 A g−1), and excellent cycling stability with 65 mA h g−1 at 500 mA g−1 after 1000 cycles.
UR - http://www.scopus.com/inward/record.url?scp=85168594670&partnerID=8YFLogxK
U2 - 10.1039/d3sc03435f
DO - 10.1039/d3sc03435f
M3 - Article
AN - SCOPUS:85168594670
VL - 14
SP - 9033
EP - 9040
JO - Chemical science
JF - Chemical science
SN - 2041-6520
IS - 34
ER -