Details
Original language | English |
---|---|
Pages (from-to) | 1-19 |
Number of pages | 19 |
Journal | Annali di Matematica Pura ed Applicata |
Volume | 190 |
Issue number | 1 |
Publication status | Published - Jan 2011 |
Abstract
A parameter-dependent model involving nonlinear diffusion for an age-structured population is studied. The parameter measures the intensity of the mortality. A bifurcation approach is used to establish existence of positive equilibrium solutions.
Keywords
- Age structure, Bifurcation, Maximal regularity, Nonlinear diffusion, Population model
ASJC Scopus subject areas
- Mathematics(all)
- Applied Mathematics
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Annali di Matematica Pura ed Applicata, Vol. 190, No. 1, 01.2011, p. 1-19.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Bifurcation of positive equilibria in nonlinear structured population models with varying mortality rates
AU - Walker, Christoph
N1 - Copyright: Copyright 2021 Elsevier B.V., All rights reserved.
PY - 2011/1
Y1 - 2011/1
N2 - A parameter-dependent model involving nonlinear diffusion for an age-structured population is studied. The parameter measures the intensity of the mortality. A bifurcation approach is used to establish existence of positive equilibrium solutions.
AB - A parameter-dependent model involving nonlinear diffusion for an age-structured population is studied. The parameter measures the intensity of the mortality. A bifurcation approach is used to establish existence of positive equilibrium solutions.
KW - Age structure
KW - Bifurcation
KW - Maximal regularity
KW - Nonlinear diffusion
KW - Population model
UR - http://www.scopus.com/inward/record.url?scp=85027934760&partnerID=8YFLogxK
U2 - 10.1007/s10231-010-0133-6
DO - 10.1007/s10231-010-0133-6
M3 - Article
AN - SCOPUS:85027934760
VL - 190
SP - 1
EP - 19
JO - Annali di Matematica Pura ed Applicata
JF - Annali di Matematica Pura ed Applicata
SN - 0373-3114
IS - 1
ER -