Details
Original language | English |
---|---|
Article number | plu019 |
Journal | AOB PLANTS |
Volume | 6 |
Publication status | Published - 15 May 2014 |
Abstract
The skin of developing soft and fleshy fruit is subjected to considerable growth stress, and failure of the skin is associated with impaired barrier properties in water transport and pathogen defence. The objectives were to establish a standardized, biaxial tensile test of the skin of soft and fleshy fruit and to use it to characterize and quantify mechanical properties of the sweet cherry (Prunus avium) fruit skin as a model. A segment of the exocarp (ES) comprising cuticle, epidermis, hypodermis and adhering flesh was mounted in the elastometer such that the in vivo strain was maintained. The ES was pressurized from the inner surface and the pressure and extent of associated bulging were recorded. Pressure: strain responses were almost linear up to the point of fracture, indicating that the modulus of elasticity was nearly constant. Abrading the cuticle decreased the fracture strain but had no effect on the fracture pressure. When pressure was held constant, bulging of the ES continued to increase. Strain relaxation upon releasing the pressure was complete and depended on time. Strains in longitudinal and latitudinal directions on the bulging ES did not differ significantly. Exocarp segments that released their in vivo strain before the test had higher fracture strains and lower moduli of elasticity. The results demonstrate that the cherry skin is isotropic in the tangential plane and exhibits elastic and viscoelastic behaviour. The epidermis and hypodermis, but not the cuticle, represent the structural 'backbone' in a cherry skin. This test is useful in quantifying the mechanical properties of soft and fleshy fruit of a range of species under standardized conditions.
Keywords
- Biomechanics, fracture, mechanical properties, Prunus avium, rheology, skin, stiffness, strain
ASJC Scopus subject areas
- Agricultural and Biological Sciences(all)
- Plant Science
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: AOB PLANTS, Vol. 6, plu019, 15.05.2014.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Biaxial tensile tests identify epidermis and hypodermis as the main structural elements of sweet cherry skin
AU - Brüggenwirth, Martin
AU - Fricke, Heiko
AU - Knoche, Moritz
PY - 2014/5/15
Y1 - 2014/5/15
N2 - The skin of developing soft and fleshy fruit is subjected to considerable growth stress, and failure of the skin is associated with impaired barrier properties in water transport and pathogen defence. The objectives were to establish a standardized, biaxial tensile test of the skin of soft and fleshy fruit and to use it to characterize and quantify mechanical properties of the sweet cherry (Prunus avium) fruit skin as a model. A segment of the exocarp (ES) comprising cuticle, epidermis, hypodermis and adhering flesh was mounted in the elastometer such that the in vivo strain was maintained. The ES was pressurized from the inner surface and the pressure and extent of associated bulging were recorded. Pressure: strain responses were almost linear up to the point of fracture, indicating that the modulus of elasticity was nearly constant. Abrading the cuticle decreased the fracture strain but had no effect on the fracture pressure. When pressure was held constant, bulging of the ES continued to increase. Strain relaxation upon releasing the pressure was complete and depended on time. Strains in longitudinal and latitudinal directions on the bulging ES did not differ significantly. Exocarp segments that released their in vivo strain before the test had higher fracture strains and lower moduli of elasticity. The results demonstrate that the cherry skin is isotropic in the tangential plane and exhibits elastic and viscoelastic behaviour. The epidermis and hypodermis, but not the cuticle, represent the structural 'backbone' in a cherry skin. This test is useful in quantifying the mechanical properties of soft and fleshy fruit of a range of species under standardized conditions.
AB - The skin of developing soft and fleshy fruit is subjected to considerable growth stress, and failure of the skin is associated with impaired barrier properties in water transport and pathogen defence. The objectives were to establish a standardized, biaxial tensile test of the skin of soft and fleshy fruit and to use it to characterize and quantify mechanical properties of the sweet cherry (Prunus avium) fruit skin as a model. A segment of the exocarp (ES) comprising cuticle, epidermis, hypodermis and adhering flesh was mounted in the elastometer such that the in vivo strain was maintained. The ES was pressurized from the inner surface and the pressure and extent of associated bulging were recorded. Pressure: strain responses were almost linear up to the point of fracture, indicating that the modulus of elasticity was nearly constant. Abrading the cuticle decreased the fracture strain but had no effect on the fracture pressure. When pressure was held constant, bulging of the ES continued to increase. Strain relaxation upon releasing the pressure was complete and depended on time. Strains in longitudinal and latitudinal directions on the bulging ES did not differ significantly. Exocarp segments that released their in vivo strain before the test had higher fracture strains and lower moduli of elasticity. The results demonstrate that the cherry skin is isotropic in the tangential plane and exhibits elastic and viscoelastic behaviour. The epidermis and hypodermis, but not the cuticle, represent the structural 'backbone' in a cherry skin. This test is useful in quantifying the mechanical properties of soft and fleshy fruit of a range of species under standardized conditions.
KW - Biomechanics
KW - fracture
KW - mechanical properties
KW - Prunus avium
KW - rheology
KW - skin
KW - stiffness
KW - strain
UR - http://www.scopus.com/inward/record.url?scp=84901987047&partnerID=8YFLogxK
U2 - 10.1093/aobpla/plu019
DO - 10.1093/aobpla/plu019
M3 - Article
AN - SCOPUS:84901987047
VL - 6
JO - AOB PLANTS
JF - AOB PLANTS
SN - 2041-2851
M1 - plu019
ER -