Loading [MathJax]/extensions/tex2jax.js

Auxiliary function development for the LISA metrology system

Research output: ThesisDoctoral thesis

Authors

  • Nils Christopher Brause

Research Organisations

Details

Original languageEnglish
QualificationDoctor rerum naturalium
Awarding Institution
Supervised by
  • Karsten Danzmann, Supervisor
Date of Award2 May 2018
Place of PublicationHannover
Publication statusPublished - 2018

Abstract

The Laser Interferometer Space Antenna (LISA) is a planned gravitational wave detector to be positioned in space. It consists of three spacecrafts that use Long Range Interferometry (LRI) to measure relative distance changes between them. An important component of LISA is the LISA Metrology System (LMS) which is responsible for the distance measurements as well as various auxiliary functions: The beatnote acquisition allows the LMS to lock to an incoming beatnote signal with an unknown frequency and amplitude. It measures both with a Fast FourierbTransform (FFT) and controls the starting frequencies and gains of the Digital Phase Locked Loops (DPLLs) accordingly. The laser locking algorithm is used to lock the frequency of one laser to the frequency of another laser. This is done by locking the difference frequency between two lasers to a constant target and thus enabling heterodyne interferometry. The amplitude of the incoming beatnote signal can vary greatly over time. To compensate for that, the Automatic Gain Control (AGC) functionality observes the amplitudes and reconfigures the gains of the DPLLs accordingly. In LISA the pointing will be measured using an advanced Differential Wavefront Sensing (DWS) scheme, which track the differential phases between the segments of a Quadrant Photo Diode (QPD) directly instead of calculating them from the measured phases of the segment DPLLs. This improves the Carrier to Noise Density Ratio (CNR) in the DPLLs by a factor of two. The absolute distance between the spacecrafts is also measured to enable Time-Delay Interferometry (TDI) in post-processing. This is done by sending a Pseudo-Random Noise (PRN) code via the laser link to a distant spacecraft, where it is correlated with a local copy of the same PRN code to determine the travel distance from the measured delay. Since only one of the three LISA spacecrafts has a radio link to earth, data has to be transferred between the three spacecrafts. This functionality is part of the Delay Locked Loop (DLL), by modulating the data onto the PRN code. In the course of this thesis, all the necessary auxiliary functions will be developed, thoroughly described and measured.

Cite this

Auxiliary function development for the LISA metrology system. / Brause, Nils Christopher.
Hannover, 2018. 186 p.

Research output: ThesisDoctoral thesis

Brause, NC 2018, 'Auxiliary function development for the LISA metrology system', Doctor rerum naturalium, Leibniz University Hannover, Hannover. https://doi.org/10.15488/3511
Brause, N. C. (2018). Auxiliary function development for the LISA metrology system. [Doctoral thesis, Leibniz University Hannover]. https://doi.org/10.15488/3511
Brause NC. Auxiliary function development for the LISA metrology system. Hannover, 2018. 186 p. doi: 10.15488/3511
Brause, Nils Christopher. / Auxiliary function development for the LISA metrology system. Hannover, 2018. 186 p.
Download
@phdthesis{1dc62d87d0674541b27e0c6d202f7ae8,
title = "Auxiliary function development for the LISA metrology system",
abstract = "The Laser Interferometer Space Antenna (LISA) is a planned gravitational wave detector to be positioned in space. It consists of three spacecrafts that use Long Range Interferometry (LRI) to measure relative distance changes between them. An important component of LISA is the LISA Metrology System (LMS) which is responsible for the distance measurements as well as various auxiliary functions: The beatnote acquisition allows the LMS to lock to an incoming beatnote signal with an unknown frequency and amplitude. It measures both with a Fast FourierbTransform (FFT) and controls the starting frequencies and gains of the Digital Phase Locked Loops (DPLLs) accordingly. The laser locking algorithm is used to lock the frequency of one laser to the frequency of another laser. This is done by locking the difference frequency between two lasers to a constant target and thus enabling heterodyne interferometry. The amplitude of the incoming beatnote signal can vary greatly over time. To compensate for that, the Automatic Gain Control (AGC) functionality observes the amplitudes and reconfigures the gains of the DPLLs accordingly. In LISA the pointing will be measured using an advanced Differential Wavefront Sensing (DWS) scheme, which track the differential phases between the segments of a Quadrant Photo Diode (QPD) directly instead of calculating them from the measured phases of the segment DPLLs. This improves the Carrier to Noise Density Ratio (CNR) in the DPLLs by a factor of two. The absolute distance between the spacecrafts is also measured to enable Time-Delay Interferometry (TDI) in post-processing. This is done by sending a Pseudo-Random Noise (PRN) code via the laser link to a distant spacecraft, where it is correlated with a local copy of the same PRN code to determine the travel distance from the measured delay. Since only one of the three LISA spacecrafts has a radio link to earth, data has to be transferred between the three spacecrafts. This functionality is part of the Delay Locked Loop (DLL), by modulating the data onto the PRN code. In the course of this thesis, all the necessary auxiliary functions will be developed, thoroughly described and measured.",
author = "Brause, {Nils Christopher}",
note = "Doctoral thesis",
year = "2018",
doi = "10.15488/3511",
language = "English",
school = "Leibniz University Hannover",

}

Download

TY - BOOK

T1 - Auxiliary function development for the LISA metrology system

AU - Brause, Nils Christopher

N1 - Doctoral thesis

PY - 2018

Y1 - 2018

N2 - The Laser Interferometer Space Antenna (LISA) is a planned gravitational wave detector to be positioned in space. It consists of three spacecrafts that use Long Range Interferometry (LRI) to measure relative distance changes between them. An important component of LISA is the LISA Metrology System (LMS) which is responsible for the distance measurements as well as various auxiliary functions: The beatnote acquisition allows the LMS to lock to an incoming beatnote signal with an unknown frequency and amplitude. It measures both with a Fast FourierbTransform (FFT) and controls the starting frequencies and gains of the Digital Phase Locked Loops (DPLLs) accordingly. The laser locking algorithm is used to lock the frequency of one laser to the frequency of another laser. This is done by locking the difference frequency between two lasers to a constant target and thus enabling heterodyne interferometry. The amplitude of the incoming beatnote signal can vary greatly over time. To compensate for that, the Automatic Gain Control (AGC) functionality observes the amplitudes and reconfigures the gains of the DPLLs accordingly. In LISA the pointing will be measured using an advanced Differential Wavefront Sensing (DWS) scheme, which track the differential phases between the segments of a Quadrant Photo Diode (QPD) directly instead of calculating them from the measured phases of the segment DPLLs. This improves the Carrier to Noise Density Ratio (CNR) in the DPLLs by a factor of two. The absolute distance between the spacecrafts is also measured to enable Time-Delay Interferometry (TDI) in post-processing. This is done by sending a Pseudo-Random Noise (PRN) code via the laser link to a distant spacecraft, where it is correlated with a local copy of the same PRN code to determine the travel distance from the measured delay. Since only one of the three LISA spacecrafts has a radio link to earth, data has to be transferred between the three spacecrafts. This functionality is part of the Delay Locked Loop (DLL), by modulating the data onto the PRN code. In the course of this thesis, all the necessary auxiliary functions will be developed, thoroughly described and measured.

AB - The Laser Interferometer Space Antenna (LISA) is a planned gravitational wave detector to be positioned in space. It consists of three spacecrafts that use Long Range Interferometry (LRI) to measure relative distance changes between them. An important component of LISA is the LISA Metrology System (LMS) which is responsible for the distance measurements as well as various auxiliary functions: The beatnote acquisition allows the LMS to lock to an incoming beatnote signal with an unknown frequency and amplitude. It measures both with a Fast FourierbTransform (FFT) and controls the starting frequencies and gains of the Digital Phase Locked Loops (DPLLs) accordingly. The laser locking algorithm is used to lock the frequency of one laser to the frequency of another laser. This is done by locking the difference frequency between two lasers to a constant target and thus enabling heterodyne interferometry. The amplitude of the incoming beatnote signal can vary greatly over time. To compensate for that, the Automatic Gain Control (AGC) functionality observes the amplitudes and reconfigures the gains of the DPLLs accordingly. In LISA the pointing will be measured using an advanced Differential Wavefront Sensing (DWS) scheme, which track the differential phases between the segments of a Quadrant Photo Diode (QPD) directly instead of calculating them from the measured phases of the segment DPLLs. This improves the Carrier to Noise Density Ratio (CNR) in the DPLLs by a factor of two. The absolute distance between the spacecrafts is also measured to enable Time-Delay Interferometry (TDI) in post-processing. This is done by sending a Pseudo-Random Noise (PRN) code via the laser link to a distant spacecraft, where it is correlated with a local copy of the same PRN code to determine the travel distance from the measured delay. Since only one of the three LISA spacecrafts has a radio link to earth, data has to be transferred between the three spacecrafts. This functionality is part of the Delay Locked Loop (DLL), by modulating the data onto the PRN code. In the course of this thesis, all the necessary auxiliary functions will be developed, thoroughly described and measured.

U2 - 10.15488/3511

DO - 10.15488/3511

M3 - Doctoral thesis

CY - Hannover

ER -