Details
Original language | English |
---|---|
Pages (from-to) | 1355-1362 |
Number of pages | 8 |
Journal | International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives |
Volume | 42 |
Issue number | 3 |
Publication status | Published - 30 Apr 2018 |
Event | 2018 ISPRS TC III Mid-Term Symposium on Developments, Technologies and Applications in Remote Sensing - Beijing, China Duration: 7 May 2018 → 10 May 2018 |
Abstract
In this paper we investigate the potential of automatic supervised classification for urban hydrological applications. In particular, we contribute to runoff simulations using hydrodynamic urban drainage models. In order to assess whether the capacity of the sewers is sufficient to avoid surcharge within certain return periods, precipitation is transformed into runoff. The transformation of precipitation into runoff requires knowledge about the proportion of drainage-effective areas and their spatial distribution in the catchment area. Common simulation methods use the coefficient of imperviousness as an important parameter to estimate the overland flow, which subsequently contributes to the pipe flow. The coefficient of imperviousness is the percentage of area covered by impervious surfaces such as roofs or road surfaces. It is still common practice to assign the coefficient of imperviousness for each particular land parcel manually by visual interpretation of aerial images. Based on classification results of these imagery we contribute to an objective automatic determination of the coefficient of imperviousness. In this context we compare two classification techniques: Random Forests (RF) and Conditional Random Fields (CRF). Experimental results performed on an urban test area show good results and confirm that the automated derivation of the coefficient of imperviousness, apart from being more objective and, thus, reproducible, delivers more accurate results than the interactive estimation. We achieve an overall accuracy of about 85% for both classifiers. The root mean square error of the differences of the coefficient of imperviousness compared to the reference is 4.4% for the CRF-based classification, and 3.8% for the RF-based classification.
Keywords
- Classification, Coefficient of imperviousness, Conditional random fields, Hydrologic application, Random forests
ASJC Scopus subject areas
- Computer Science(all)
- Information Systems
- Social Sciences(all)
- Geography, Planning and Development
Sustainable Development Goals
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, Vol. 42, No. 3, 30.04.2018, p. 1355-1362.
Research output: Contribution to journal › Conference article › Research › peer review
}
TY - JOUR
T1 - Automatic classification of aerial imagery for urban hydrological applications
AU - Paul, A.
AU - Yang, C.
AU - Breitkopf, U.
AU - Liu, Y.
AU - Wang, Z.
AU - Rottensteiner, F.
AU - Wallner, M.
AU - Verworn, A.
AU - Heipke, C.
PY - 2018/4/30
Y1 - 2018/4/30
N2 - In this paper we investigate the potential of automatic supervised classification for urban hydrological applications. In particular, we contribute to runoff simulations using hydrodynamic urban drainage models. In order to assess whether the capacity of the sewers is sufficient to avoid surcharge within certain return periods, precipitation is transformed into runoff. The transformation of precipitation into runoff requires knowledge about the proportion of drainage-effective areas and their spatial distribution in the catchment area. Common simulation methods use the coefficient of imperviousness as an important parameter to estimate the overland flow, which subsequently contributes to the pipe flow. The coefficient of imperviousness is the percentage of area covered by impervious surfaces such as roofs or road surfaces. It is still common practice to assign the coefficient of imperviousness for each particular land parcel manually by visual interpretation of aerial images. Based on classification results of these imagery we contribute to an objective automatic determination of the coefficient of imperviousness. In this context we compare two classification techniques: Random Forests (RF) and Conditional Random Fields (CRF). Experimental results performed on an urban test area show good results and confirm that the automated derivation of the coefficient of imperviousness, apart from being more objective and, thus, reproducible, delivers more accurate results than the interactive estimation. We achieve an overall accuracy of about 85% for both classifiers. The root mean square error of the differences of the coefficient of imperviousness compared to the reference is 4.4% for the CRF-based classification, and 3.8% for the RF-based classification.
AB - In this paper we investigate the potential of automatic supervised classification for urban hydrological applications. In particular, we contribute to runoff simulations using hydrodynamic urban drainage models. In order to assess whether the capacity of the sewers is sufficient to avoid surcharge within certain return periods, precipitation is transformed into runoff. The transformation of precipitation into runoff requires knowledge about the proportion of drainage-effective areas and their spatial distribution in the catchment area. Common simulation methods use the coefficient of imperviousness as an important parameter to estimate the overland flow, which subsequently contributes to the pipe flow. The coefficient of imperviousness is the percentage of area covered by impervious surfaces such as roofs or road surfaces. It is still common practice to assign the coefficient of imperviousness for each particular land parcel manually by visual interpretation of aerial images. Based on classification results of these imagery we contribute to an objective automatic determination of the coefficient of imperviousness. In this context we compare two classification techniques: Random Forests (RF) and Conditional Random Fields (CRF). Experimental results performed on an urban test area show good results and confirm that the automated derivation of the coefficient of imperviousness, apart from being more objective and, thus, reproducible, delivers more accurate results than the interactive estimation. We achieve an overall accuracy of about 85% for both classifiers. The root mean square error of the differences of the coefficient of imperviousness compared to the reference is 4.4% for the CRF-based classification, and 3.8% for the RF-based classification.
KW - Classification
KW - Coefficient of imperviousness
KW - Conditional random fields
KW - Hydrologic application
KW - Random forests
UR - http://www.scopus.com/inward/record.url?scp=85046962497&partnerID=8YFLogxK
U2 - 10.5194/isprs-archives-XLII-3-1355-2018
DO - 10.5194/isprs-archives-XLII-3-1355-2018
M3 - Conference article
AN - SCOPUS:85046962497
VL - 42
SP - 1355
EP - 1362
JO - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives
JF - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives
SN - 1682-1750
IS - 3
T2 - 2018 ISPRS TC III Mid-Term Symposium on Developments, Technologies and Applications in Remote Sensing
Y2 - 7 May 2018 through 10 May 2018
ER -