Details
Original language | English |
---|---|
Article number | 100629 |
Journal | Surface science reports |
Volume | 79 |
Issue number | 2 |
Early online date | 7 May 2024 |
Publication status | Published - May 2024 |
Abstract
Wires having a width of one or two atoms are the smallest possible physical objects that may exhibit one-dimensional properties. In order to be experimentally accessible at finite temperatures, such wires must stabilized by interactions in two and even three dimensions. These interactions modify and partly destroy their one-dimensional properties, but introduce new phenomena of coupling and correlation that entangle both charge and spin. We explore this fascinating field by first giving an overview of the present status of theoretical knowledge on 1D physics, including coupling between chains and to the substrate, before we set out for experimental results on ordered arrays of atomic wires on both flat and vicinal Si(111) surfaces comprising Si(111)-In, Si(hhk)-Au, Si(557)-Pb, Si(557)-Ag, on Ge(001)-Au and of rare earth silicide wires. While for these systems structural, spectroscopic and (magneto-)conductive properties are in the focus, including temperature- and concentration-induced phase transitions, explicit dynamics on the femto- and picosecond time scales were explored for the modified Peierls transition in indium chains on Si(111). All these systems are characterized by strong correlations, including spin, that are extended over whole terraces and partly beyond, so that small geometric changes lead to large modifications of their electronic properties. Thus this coupling in one (1D), two (2D) (and even three) dimensions results in a wealth of phase transitions and transient quasi-1D conductance. As extremes, modified quasi-1D properties survive, as in the Si(111)-In system, whereas strong Fermi nesting results in entanglement of spin and charge between terraces for Si(557)-Pb, so that spin orbit density waves across the steps are formed.
ASJC Scopus subject areas
- Materials Science(all)
- Electronic, Optical and Magnetic Materials
- Physics and Astronomy(all)
- Condensed Matter Physics
- Physics and Astronomy(all)
- Surfaces and Interfaces
- Materials Science(all)
- Surfaces, Coatings and Films
- Materials Science(all)
- Metals and Alloys
- Materials Science(all)
- Materials Chemistry
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Surface science reports, Vol. 79, No. 2, 100629, 05.2024.
Research output: Contribution to journal › Review article › Research › peer review
}
TY - JOUR
T1 - Atomic wires on substrates
T2 - Physics between one and two dimensions
AU - Pfnür, H.
AU - Tegenkamp, C.
AU - Sanna, S.
AU - Jeckelmann, E.
AU - Horn-von Hoegen, M.
AU - Bovensiepen, U.
AU - Esser, N.
AU - Schmidt, W. G.
AU - Dähne, M.
AU - Wippermann, S.
AU - Bechstedt, F.
AU - Bode, M.
AU - Claessen, R.
AU - Ernstorfer, R.
AU - Hogan, C.
AU - Ligges, M.
AU - Pucci, A.
AU - Schäfer, J.
AU - Speiser, E.
AU - Wolf, M.
AU - Wollschläger, J.
N1 - Publisher Copyright: © 2024 The Authors
PY - 2024/5
Y1 - 2024/5
N2 - Wires having a width of one or two atoms are the smallest possible physical objects that may exhibit one-dimensional properties. In order to be experimentally accessible at finite temperatures, such wires must stabilized by interactions in two and even three dimensions. These interactions modify and partly destroy their one-dimensional properties, but introduce new phenomena of coupling and correlation that entangle both charge and spin. We explore this fascinating field by first giving an overview of the present status of theoretical knowledge on 1D physics, including coupling between chains and to the substrate, before we set out for experimental results on ordered arrays of atomic wires on both flat and vicinal Si(111) surfaces comprising Si(111)-In, Si(hhk)-Au, Si(557)-Pb, Si(557)-Ag, on Ge(001)-Au and of rare earth silicide wires. While for these systems structural, spectroscopic and (magneto-)conductive properties are in the focus, including temperature- and concentration-induced phase transitions, explicit dynamics on the femto- and picosecond time scales were explored for the modified Peierls transition in indium chains on Si(111). All these systems are characterized by strong correlations, including spin, that are extended over whole terraces and partly beyond, so that small geometric changes lead to large modifications of their electronic properties. Thus this coupling in one (1D), two (2D) (and even three) dimensions results in a wealth of phase transitions and transient quasi-1D conductance. As extremes, modified quasi-1D properties survive, as in the Si(111)-In system, whereas strong Fermi nesting results in entanglement of spin and charge between terraces for Si(557)-Pb, so that spin orbit density waves across the steps are formed.
AB - Wires having a width of one or two atoms are the smallest possible physical objects that may exhibit one-dimensional properties. In order to be experimentally accessible at finite temperatures, such wires must stabilized by interactions in two and even three dimensions. These interactions modify and partly destroy their one-dimensional properties, but introduce new phenomena of coupling and correlation that entangle both charge and spin. We explore this fascinating field by first giving an overview of the present status of theoretical knowledge on 1D physics, including coupling between chains and to the substrate, before we set out for experimental results on ordered arrays of atomic wires on both flat and vicinal Si(111) surfaces comprising Si(111)-In, Si(hhk)-Au, Si(557)-Pb, Si(557)-Ag, on Ge(001)-Au and of rare earth silicide wires. While for these systems structural, spectroscopic and (magneto-)conductive properties are in the focus, including temperature- and concentration-induced phase transitions, explicit dynamics on the femto- and picosecond time scales were explored for the modified Peierls transition in indium chains on Si(111). All these systems are characterized by strong correlations, including spin, that are extended over whole terraces and partly beyond, so that small geometric changes lead to large modifications of their electronic properties. Thus this coupling in one (1D), two (2D) (and even three) dimensions results in a wealth of phase transitions and transient quasi-1D conductance. As extremes, modified quasi-1D properties survive, as in the Si(111)-In system, whereas strong Fermi nesting results in entanglement of spin and charge between terraces for Si(557)-Pb, so that spin orbit density waves across the steps are formed.
UR - http://www.scopus.com/inward/record.url?scp=85193613750&partnerID=8YFLogxK
U2 - 10.1016/j.surfrep.2024.100629
DO - 10.1016/j.surfrep.2024.100629
M3 - Review article
AN - SCOPUS:85193613750
VL - 79
JO - Surface science reports
JF - Surface science reports
SN - 0167-5729
IS - 2
M1 - 100629
ER -