Details
Original language | English |
---|---|
Article number | 94 |
Journal | Journal of high energy physics |
Volume | 2020 |
Issue number | 10 |
Publication status | Published - 14 Oct 2020 |
Abstract
We investigate the asymptotic symmetry group of the free SU(N)-Yang-Mills theory using the Hamiltonian formalism. We closely follow the strategy of Henneaux and Troessaert who successfully applied the Hamiltonian formalism to the case of gravity and electrodynamics, thereby deriving the respective asymptotic symmetry groups of these theories from clear-cut first principles. These principles include the minimal assumptions that are necessary to ensure the existence of Hamiltonian structures (phase space, symplectic form, differentiable Hamiltonian) and, in case of Poincaré invariant theories, a canonical action of the Poincaré group. In the first part of the paper we show how these requirements can be met in the non-abelian SU(N)-Yang-Mills case by imposing suitable fall-off and parity conditions on the fields. We observe that these conditions admit neither non-trivial asymptotic symmetries nor non-zero global charges. In the second part of the paper we discuss possible gradual relaxations of these conditions by following the same strategy that Henneaux and Troessaert had employed to remedy a similar situation in the electromagnetic case. Contrary to our expectation and the findings of Henneaux and Troessaert for the abelian case, there seems to be no relaxation that meets the requirements of a Hamiltonian formalism and allows for non-trivial asymptotic symmetries and charges. Non-trivial asymptotic symmetries and charges are only possible if either the Poincaré group fails to act canonically or if the formal expression for the symplectic form diverges, i.e. the form does not exist. This seems to hint at a kind of colour-confinement built into the classical Hamiltonian formulation of non-abelian gauge theories.
Keywords
- Gauge Symmetry, Global Symmetries, Space-Time Symmetries
ASJC Scopus subject areas
- Physics and Astronomy(all)
- Nuclear and High Energy Physics
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Journal of high energy physics, Vol. 2020, No. 10, 94, 14.10.2020.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Asymptotic symmetries of Yang-Mills fields in Hamiltonian formulation
AU - Tanzi, Roberto
AU - Giulini, Domenico
PY - 2020/10/14
Y1 - 2020/10/14
N2 - We investigate the asymptotic symmetry group of the free SU(N)-Yang-Mills theory using the Hamiltonian formalism. We closely follow the strategy of Henneaux and Troessaert who successfully applied the Hamiltonian formalism to the case of gravity and electrodynamics, thereby deriving the respective asymptotic symmetry groups of these theories from clear-cut first principles. These principles include the minimal assumptions that are necessary to ensure the existence of Hamiltonian structures (phase space, symplectic form, differentiable Hamiltonian) and, in case of Poincaré invariant theories, a canonical action of the Poincaré group. In the first part of the paper we show how these requirements can be met in the non-abelian SU(N)-Yang-Mills case by imposing suitable fall-off and parity conditions on the fields. We observe that these conditions admit neither non-trivial asymptotic symmetries nor non-zero global charges. In the second part of the paper we discuss possible gradual relaxations of these conditions by following the same strategy that Henneaux and Troessaert had employed to remedy a similar situation in the electromagnetic case. Contrary to our expectation and the findings of Henneaux and Troessaert for the abelian case, there seems to be no relaxation that meets the requirements of a Hamiltonian formalism and allows for non-trivial asymptotic symmetries and charges. Non-trivial asymptotic symmetries and charges are only possible if either the Poincaré group fails to act canonically or if the formal expression for the symplectic form diverges, i.e. the form does not exist. This seems to hint at a kind of colour-confinement built into the classical Hamiltonian formulation of non-abelian gauge theories.
AB - We investigate the asymptotic symmetry group of the free SU(N)-Yang-Mills theory using the Hamiltonian formalism. We closely follow the strategy of Henneaux and Troessaert who successfully applied the Hamiltonian formalism to the case of gravity and electrodynamics, thereby deriving the respective asymptotic symmetry groups of these theories from clear-cut first principles. These principles include the minimal assumptions that are necessary to ensure the existence of Hamiltonian structures (phase space, symplectic form, differentiable Hamiltonian) and, in case of Poincaré invariant theories, a canonical action of the Poincaré group. In the first part of the paper we show how these requirements can be met in the non-abelian SU(N)-Yang-Mills case by imposing suitable fall-off and parity conditions on the fields. We observe that these conditions admit neither non-trivial asymptotic symmetries nor non-zero global charges. In the second part of the paper we discuss possible gradual relaxations of these conditions by following the same strategy that Henneaux and Troessaert had employed to remedy a similar situation in the electromagnetic case. Contrary to our expectation and the findings of Henneaux and Troessaert for the abelian case, there seems to be no relaxation that meets the requirements of a Hamiltonian formalism and allows for non-trivial asymptotic symmetries and charges. Non-trivial asymptotic symmetries and charges are only possible if either the Poincaré group fails to act canonically or if the formal expression for the symplectic form diverges, i.e. the form does not exist. This seems to hint at a kind of colour-confinement built into the classical Hamiltonian formulation of non-abelian gauge theories.
KW - Gauge Symmetry
KW - Global Symmetries
KW - Space-Time Symmetries
UR - http://www.scopus.com/inward/record.url?scp=85092559541&partnerID=8YFLogxK
U2 - 10.48550/arXiv.2006.07268
DO - 10.48550/arXiv.2006.07268
M3 - Article
AN - SCOPUS:85092559541
VL - 2020
JO - Journal of high energy physics
JF - Journal of high energy physics
SN - 1029-8479
IS - 10
M1 - 94
ER -