Details
Original language | English |
---|---|
Article number | 112245 |
Journal | Solar Energy Materials and Solar Cells |
Volume | 253 |
Early online date | 19 Feb 2023 |
Publication status | Published - May 2023 |
Abstract
Polysilicon (poly-Si)-on-oxide passivating contact structures (POLO/TOPCon) enable high-efficiency solar cells as they simultaneously provide a very high level of surface passivation and a high conductance for either electrons or holes. The ease of incorporation with existing manufacturing lines and their tolerance for high-temperature processing has increased the wide acceptance of this structure in the PV industry. In this report, we explore the effects of short high-temperature annealing required for effective hydrogenation and formation of ohmic screen-printed contacts across a wide temperature range (636 °C–846 °C) on the stability of passivating contact structures. We study this on p-type c-Si substrates with phosphorus-doped (n-type) or boron-doped (p-type) polysilicon contacts capped with either an AlOx or SiNx coating. Our experimental results show that irrespective of the poly-Si doping type, AlOx-capped samples suffer a loss in surface passivation across the investigated temperature range, while SiNx-capped samples show an improvement at lower annealing temperatures. Above 744 °C, severely ruptured blisters occur for the samples coated with a SiNx layer, leading to lift-off of the poly layer in extreme cases, and in all cases, significant surface passivation losses, up to 99%. A study of the long-term stability of these fired samples under 1-sun illumination @ 140 °C shows that they suffer from both bulk and surface-like instabilities. Two degradation cycles were observed: the first, a boron-oxygen light-induced degradation (BO-LID) observed after 5 min, with capture cross-section ratios of 15.8–19.2, and a slower secondary degradation, similar to light and elevated temperature-induced degradation (LeTID), with maximum degradation reached after ∼ 14 days. The presence of a silicon nitride layer does not appear to influence the kinetics of post-degradation recovery. Our results suggest that the effect of firing may be influenced by the polarity of the bulk c-Si or perhaps the chemistry of the SiNx film and highlight that passivating contact structures based on p-type c-Si may offer better long-term stability than those based on n-type c-Si.
ASJC Scopus subject areas
- Materials Science(all)
- Electronic, Optical and Magnetic Materials
- Energy(all)
- Renewable Energy, Sustainability and the Environment
- Materials Science(all)
- Surfaces, Coatings and Films
Sustainable Development Goals
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Solar Energy Materials and Solar Cells, Vol. 253, 112245, 05.2023.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Assessing the stability of p+ and n+ polysilicon passivating contacts with various capping layers on p-type wafers
AU - Madumelu, Chukwuka
AU - Cai, Yalun
AU - Hollemann, Christina
AU - Peibst, Robby
AU - Hoex, Bram
AU - Hallam, Brett J.
AU - Soeriyadi, Anastasia H.
N1 - Funding Information: This work was supported by the Australian Government through the Australian Renewable Energy Agency (ARENA: 2017/RND003 ). AS acknowledges the support by the Australian Government through the Australian Renewable Energy Agency (ARENA) and the Australian Centre for Advanced Photovoltaics (ACAP) . The views expressed herein are not necessarily the views of the Australian Government, and the Australian Government does not accept responsibility for any information or advice contained herein. This work was supported by the British Council under PAK-UK ICRG 2020 grant number 006327/D/ISB/008/2021 . The authors would also like to acknowledge the Solar Industrial Research Facility (SIRF) and the Surface Analysis Laboratory , SSEAU , MWAC , UNSW for the provision of facilities and equipment used for characterization. CH thankfully acknowledges the German Federal Ministry for Economic Affairs and Climate Action and the state of Lower Saxony for funding this work.
PY - 2023/5
Y1 - 2023/5
N2 - Polysilicon (poly-Si)-on-oxide passivating contact structures (POLO/TOPCon) enable high-efficiency solar cells as they simultaneously provide a very high level of surface passivation and a high conductance for either electrons or holes. The ease of incorporation with existing manufacturing lines and their tolerance for high-temperature processing has increased the wide acceptance of this structure in the PV industry. In this report, we explore the effects of short high-temperature annealing required for effective hydrogenation and formation of ohmic screen-printed contacts across a wide temperature range (636 °C–846 °C) on the stability of passivating contact structures. We study this on p-type c-Si substrates with phosphorus-doped (n-type) or boron-doped (p-type) polysilicon contacts capped with either an AlOx or SiNx coating. Our experimental results show that irrespective of the poly-Si doping type, AlOx-capped samples suffer a loss in surface passivation across the investigated temperature range, while SiNx-capped samples show an improvement at lower annealing temperatures. Above 744 °C, severely ruptured blisters occur for the samples coated with a SiNx layer, leading to lift-off of the poly layer in extreme cases, and in all cases, significant surface passivation losses, up to 99%. A study of the long-term stability of these fired samples under 1-sun illumination @ 140 °C shows that they suffer from both bulk and surface-like instabilities. Two degradation cycles were observed: the first, a boron-oxygen light-induced degradation (BO-LID) observed after 5 min, with capture cross-section ratios of 15.8–19.2, and a slower secondary degradation, similar to light and elevated temperature-induced degradation (LeTID), with maximum degradation reached after ∼ 14 days. The presence of a silicon nitride layer does not appear to influence the kinetics of post-degradation recovery. Our results suggest that the effect of firing may be influenced by the polarity of the bulk c-Si or perhaps the chemistry of the SiNx film and highlight that passivating contact structures based on p-type c-Si may offer better long-term stability than those based on n-type c-Si.
AB - Polysilicon (poly-Si)-on-oxide passivating contact structures (POLO/TOPCon) enable high-efficiency solar cells as they simultaneously provide a very high level of surface passivation and a high conductance for either electrons or holes. The ease of incorporation with existing manufacturing lines and their tolerance for high-temperature processing has increased the wide acceptance of this structure in the PV industry. In this report, we explore the effects of short high-temperature annealing required for effective hydrogenation and formation of ohmic screen-printed contacts across a wide temperature range (636 °C–846 °C) on the stability of passivating contact structures. We study this on p-type c-Si substrates with phosphorus-doped (n-type) or boron-doped (p-type) polysilicon contacts capped with either an AlOx or SiNx coating. Our experimental results show that irrespective of the poly-Si doping type, AlOx-capped samples suffer a loss in surface passivation across the investigated temperature range, while SiNx-capped samples show an improvement at lower annealing temperatures. Above 744 °C, severely ruptured blisters occur for the samples coated with a SiNx layer, leading to lift-off of the poly layer in extreme cases, and in all cases, significant surface passivation losses, up to 99%. A study of the long-term stability of these fired samples under 1-sun illumination @ 140 °C shows that they suffer from both bulk and surface-like instabilities. Two degradation cycles were observed: the first, a boron-oxygen light-induced degradation (BO-LID) observed after 5 min, with capture cross-section ratios of 15.8–19.2, and a slower secondary degradation, similar to light and elevated temperature-induced degradation (LeTID), with maximum degradation reached after ∼ 14 days. The presence of a silicon nitride layer does not appear to influence the kinetics of post-degradation recovery. Our results suggest that the effect of firing may be influenced by the polarity of the bulk c-Si or perhaps the chemistry of the SiNx film and highlight that passivating contact structures based on p-type c-Si may offer better long-term stability than those based on n-type c-Si.
UR - http://www.scopus.com/inward/record.url?scp=85148326781&partnerID=8YFLogxK
U2 - 10.1016/j.solmat.2023.112245
DO - 10.1016/j.solmat.2023.112245
M3 - Article
AN - SCOPUS:85148326781
VL - 253
JO - Solar Energy Materials and Solar Cells
JF - Solar Energy Materials and Solar Cells
SN - 0927-0248
M1 - 112245
ER -