Details
Original language | English |
---|---|
Article number | 47 |
Number of pages | 20 |
Journal | Landscape ecology |
Volume | 39 |
Publication status | Published - 19 Feb 2024 |
Abstract
Context: Habitat suitability for pollinator species is an important indicator for pollination ecosystem service potential, i.e. for biodiversity and crop provision. Modelling habitat suitability using an expert- and process-based models such as ESTIMAP-pollination is a common and accepted approach to spatially analyse pollination service potential and to make recommendations for planning. Objectives: However, the suitability as a pollinator habitat depends not only on the land use type. It is also important to consider the condition of the habitat. For this reason, ecosystem condition information was used as a parameter for ESTIMAP modelling for the first time. Ecosystem condition data was used besides the commonly (in ESTIMAP) used information from expert assessments and from land use data. Methods: As parameters for ecosystem condition, the management intensity in agro ecosystems, the management of forests and the proportion of green space in urban areas were included and affected the modelled habitat suitability for wild bees. Results: Not all ecosystem types of the region were equally affected by the inclusion of the ecosystem condition parameter in the model. The most affected types were agricultural areas, such as arable and horticultural biotopes, whose suitability values decreased by 25.7%. As a result, areas with low suitability account for 41% of the region and 76.6% of the agro ecosystems. In forest, shrubs and woody plants land use types, the suitability decreased respectively by 4.3 and 6%. On the other hand, urban ecosystems in the city of Hannover were characterised by relatively good habitat suitabilities, especially in the proximity of wide urban forests. In 3.4% of the agricultural land, measures to support pollinators have been established. 1.6% of these measures are located in areas with low suitability. Conclusions: The results show that ecosystem condition is, in addition to land use type, an important parameter to indicate habitat suitability for pollinators. Especially for ecosystem types with varying habitat suitabilities, such as agro ecosystems, the implementation of ecosystem condition parameters is recommendable. However, the selection of suitable ecosystem condition indicators still requires further research and concise definitions.
Keywords
- Ecosystem condition, ESTIMAP, Habitat suitability, Mapping for policy support, Science policy interface, Spatial data
ASJC Scopus subject areas
- Social Sciences(all)
- Geography, Planning and Development
- Environmental Science(all)
- Ecology
- Environmental Science(all)
- Nature and Landscape Conservation
Sustainable Development Goals
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Landscape ecology, Vol. 39, 47, 19.02.2024.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Assessing pollinator habitat suitability considering ecosystem condition in the Hannover Region, Germany
AU - Hinsch, Malte
AU - Zulian, Grazia
AU - Stekker, Stefanie
AU - Rega, Carlo
AU - Nabuurs, Gert Jan
AU - Verweij, Peter
AU - Burkhard, Benjamin
N1 - Funding Information: Open Access funding enabled and organized by Projekt DEAL. This research was funded by “Deutsche Bundesstiftung Umwelt”, grant number AZ34682/01‐33/0.
PY - 2024/2/19
Y1 - 2024/2/19
N2 - Context: Habitat suitability for pollinator species is an important indicator for pollination ecosystem service potential, i.e. for biodiversity and crop provision. Modelling habitat suitability using an expert- and process-based models such as ESTIMAP-pollination is a common and accepted approach to spatially analyse pollination service potential and to make recommendations for planning. Objectives: However, the suitability as a pollinator habitat depends not only on the land use type. It is also important to consider the condition of the habitat. For this reason, ecosystem condition information was used as a parameter for ESTIMAP modelling for the first time. Ecosystem condition data was used besides the commonly (in ESTIMAP) used information from expert assessments and from land use data. Methods: As parameters for ecosystem condition, the management intensity in agro ecosystems, the management of forests and the proportion of green space in urban areas were included and affected the modelled habitat suitability for wild bees. Results: Not all ecosystem types of the region were equally affected by the inclusion of the ecosystem condition parameter in the model. The most affected types were agricultural areas, such as arable and horticultural biotopes, whose suitability values decreased by 25.7%. As a result, areas with low suitability account for 41% of the region and 76.6% of the agro ecosystems. In forest, shrubs and woody plants land use types, the suitability decreased respectively by 4.3 and 6%. On the other hand, urban ecosystems in the city of Hannover were characterised by relatively good habitat suitabilities, especially in the proximity of wide urban forests. In 3.4% of the agricultural land, measures to support pollinators have been established. 1.6% of these measures are located in areas with low suitability. Conclusions: The results show that ecosystem condition is, in addition to land use type, an important parameter to indicate habitat suitability for pollinators. Especially for ecosystem types with varying habitat suitabilities, such as agro ecosystems, the implementation of ecosystem condition parameters is recommendable. However, the selection of suitable ecosystem condition indicators still requires further research and concise definitions.
AB - Context: Habitat suitability for pollinator species is an important indicator for pollination ecosystem service potential, i.e. for biodiversity and crop provision. Modelling habitat suitability using an expert- and process-based models such as ESTIMAP-pollination is a common and accepted approach to spatially analyse pollination service potential and to make recommendations for planning. Objectives: However, the suitability as a pollinator habitat depends not only on the land use type. It is also important to consider the condition of the habitat. For this reason, ecosystem condition information was used as a parameter for ESTIMAP modelling for the first time. Ecosystem condition data was used besides the commonly (in ESTIMAP) used information from expert assessments and from land use data. Methods: As parameters for ecosystem condition, the management intensity in agro ecosystems, the management of forests and the proportion of green space in urban areas were included and affected the modelled habitat suitability for wild bees. Results: Not all ecosystem types of the region were equally affected by the inclusion of the ecosystem condition parameter in the model. The most affected types were agricultural areas, such as arable and horticultural biotopes, whose suitability values decreased by 25.7%. As a result, areas with low suitability account for 41% of the region and 76.6% of the agro ecosystems. In forest, shrubs and woody plants land use types, the suitability decreased respectively by 4.3 and 6%. On the other hand, urban ecosystems in the city of Hannover were characterised by relatively good habitat suitabilities, especially in the proximity of wide urban forests. In 3.4% of the agricultural land, measures to support pollinators have been established. 1.6% of these measures are located in areas with low suitability. Conclusions: The results show that ecosystem condition is, in addition to land use type, an important parameter to indicate habitat suitability for pollinators. Especially for ecosystem types with varying habitat suitabilities, such as agro ecosystems, the implementation of ecosystem condition parameters is recommendable. However, the selection of suitable ecosystem condition indicators still requires further research and concise definitions.
KW - Ecosystem condition
KW - ESTIMAP
KW - Habitat suitability
KW - Mapping for policy support
KW - Science policy interface
KW - Spatial data
UR - http://www.scopus.com/inward/record.url?scp=85185494718&partnerID=8YFLogxK
U2 - 10.1007/s10980-024-01851-x
DO - 10.1007/s10980-024-01851-x
M3 - Article
AN - SCOPUS:85185494718
VL - 39
JO - Landscape ecology
JF - Landscape ecology
SN - 0921-2973
M1 - 47
ER -