Applications to Classical Topics

Research output: Chapter in book/report/conference proceedingContribution to book/anthologyResearchpeer review

Authors

Research Organisations

External Research Organisations

  • Rikkyo University
View graph of relations

Details

Original languageEnglish
Title of host publicationMordell–Weil Lattices
PublisherSpringer Singapore
Pages229-286
Number of pages58
Edition1.
ISBN (electronic)978-981-32-9301-4
ISBN (print)978-981-32-9300-7, 978-981-32-9303-8
Publication statusPublished - 17 Oct 2019

Publication series

NameErgebnisse der Mathematik und ihrer Grenzgebiete - 3. Folge / A Series of Modern Surveys in Mathematics
Volume70
ISSN (Print)0071-1136
ISSN (electronic)2197-5655

Abstract

This chapter forms a unit with the previous one in the sense that it continues to discuss more recent developments arising from Mordell–Weil lattices from the point of view of Galois representations and algebraic equations. We discuss excellent families in the multiplicative setting and various applications of Mordell–Weil lattices, for instance to the classical problem of the 27 lines on a cubic surface.

ASJC Scopus subject areas

Cite this

Applications to Classical Topics. / Schütt, Matthias; Shioda, Tetsuji.
Mordell–Weil Lattices. 1. ed. Springer Singapore, 2019. p. 229-286 (Ergebnisse der Mathematik und ihrer Grenzgebiete - 3. Folge / A Series of Modern Surveys in Mathematics ; Vol. 70).

Research output: Chapter in book/report/conference proceedingContribution to book/anthologyResearchpeer review

Schütt, M & Shioda, T 2019, Applications to Classical Topics. in Mordell–Weil Lattices. 1. edn, Ergebnisse der Mathematik und ihrer Grenzgebiete - 3. Folge / A Series of Modern Surveys in Mathematics , vol. 70, Springer Singapore, pp. 229-286. https://doi.org/10.1007/978-981-32-9301-4_10
Schütt, M., & Shioda, T. (2019). Applications to Classical Topics. In Mordell–Weil Lattices (1. ed., pp. 229-286). (Ergebnisse der Mathematik und ihrer Grenzgebiete - 3. Folge / A Series of Modern Surveys in Mathematics ; Vol. 70). Springer Singapore. https://doi.org/10.1007/978-981-32-9301-4_10
Schütt M, Shioda T. Applications to Classical Topics. In Mordell–Weil Lattices. 1. ed. Springer Singapore. 2019. p. 229-286. (Ergebnisse der Mathematik und ihrer Grenzgebiete - 3. Folge / A Series of Modern Surveys in Mathematics ). doi: 10.1007/978-981-32-9301-4_10
Schütt, Matthias ; Shioda, Tetsuji. / Applications to Classical Topics. Mordell–Weil Lattices. 1. ed. Springer Singapore, 2019. pp. 229-286 (Ergebnisse der Mathematik und ihrer Grenzgebiete - 3. Folge / A Series of Modern Surveys in Mathematics ).
Download
@inbook{88ffbdbdb1b5476b9a2671fe4f70217c,
title = "Applications to Classical Topics",
abstract = "This chapter forms a unit with the previous one in the sense that it continues to discuss more recent developments arising from Mordell–Weil lattices from the point of view of Galois representations and algebraic equations. We discuss excellent families in the multiplicative setting and various applications of Mordell–Weil lattices, for instance to the classical problem of the 27 lines on a cubic surface.",
author = "Matthias Sch{\"u}tt and Tetsuji Shioda",
year = "2019",
month = oct,
day = "17",
doi = "10.1007/978-981-32-9301-4_10",
language = "English",
isbn = "978-981-32-9300-7",
series = "Ergebnisse der Mathematik und ihrer Grenzgebiete - 3. Folge / A Series of Modern Surveys in Mathematics ",
publisher = "Springer Singapore",
pages = "229--286",
booktitle = "Mordell–Weil Lattices",
address = "Singapore",
edition = "1.",

}

Download

TY - CHAP

T1 - Applications to Classical Topics

AU - Schütt, Matthias

AU - Shioda, Tetsuji

PY - 2019/10/17

Y1 - 2019/10/17

N2 - This chapter forms a unit with the previous one in the sense that it continues to discuss more recent developments arising from Mordell–Weil lattices from the point of view of Galois representations and algebraic equations. We discuss excellent families in the multiplicative setting and various applications of Mordell–Weil lattices, for instance to the classical problem of the 27 lines on a cubic surface.

AB - This chapter forms a unit with the previous one in the sense that it continues to discuss more recent developments arising from Mordell–Weil lattices from the point of view of Galois representations and algebraic equations. We discuss excellent families in the multiplicative setting and various applications of Mordell–Weil lattices, for instance to the classical problem of the 27 lines on a cubic surface.

UR - http://www.scopus.com/inward/record.url?scp=85074639394&partnerID=8YFLogxK

U2 - 10.1007/978-981-32-9301-4_10

DO - 10.1007/978-981-32-9301-4_10

M3 - Contribution to book/anthology

AN - SCOPUS:85074639394

SN - 978-981-32-9300-7

SN - 978-981-32-9303-8

T3 - Ergebnisse der Mathematik und ihrer Grenzgebiete - 3. Folge / A Series of Modern Surveys in Mathematics

SP - 229

EP - 286

BT - Mordell–Weil Lattices

PB - Springer Singapore

ER -

By the same author(s)