Details
Original language | English |
---|---|
Title of host publication | Mordell–Weil Lattices |
Publisher | Springer Singapore |
Pages | 229-286 |
Number of pages | 58 |
Edition | 1. |
ISBN (electronic) | 978-981-32-9301-4 |
ISBN (print) | 978-981-32-9300-7, 978-981-32-9303-8 |
Publication status | Published - 17 Oct 2019 |
Publication series
Name | Ergebnisse der Mathematik und ihrer Grenzgebiete - 3. Folge / A Series of Modern Surveys in Mathematics |
---|---|
Volume | 70 |
ISSN (Print) | 0071-1136 |
ISSN (electronic) | 2197-5655 |
Abstract
This chapter forms a unit with the previous one in the sense that it continues to discuss more recent developments arising from Mordell–Weil lattices from the point of view of Galois representations and algebraic equations. We discuss excellent families in the multiplicative setting and various applications of Mordell–Weil lattices, for instance to the classical problem of the 27 lines on a cubic surface.
ASJC Scopus subject areas
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
Mordell–Weil Lattices. 1. ed. Springer Singapore, 2019. p. 229-286 (Ergebnisse der Mathematik und ihrer Grenzgebiete - 3. Folge / A Series of Modern Surveys in Mathematics ; Vol. 70).
Research output: Chapter in book/report/conference proceeding › Contribution to book/anthology › Research › peer review
}
TY - CHAP
T1 - Applications to Classical Topics
AU - Schütt, Matthias
AU - Shioda, Tetsuji
PY - 2019/10/17
Y1 - 2019/10/17
N2 - This chapter forms a unit with the previous one in the sense that it continues to discuss more recent developments arising from Mordell–Weil lattices from the point of view of Galois representations and algebraic equations. We discuss excellent families in the multiplicative setting and various applications of Mordell–Weil lattices, for instance to the classical problem of the 27 lines on a cubic surface.
AB - This chapter forms a unit with the previous one in the sense that it continues to discuss more recent developments arising from Mordell–Weil lattices from the point of view of Galois representations and algebraic equations. We discuss excellent families in the multiplicative setting and various applications of Mordell–Weil lattices, for instance to the classical problem of the 27 lines on a cubic surface.
UR - http://www.scopus.com/inward/record.url?scp=85074639394&partnerID=8YFLogxK
U2 - 10.1007/978-981-32-9301-4_10
DO - 10.1007/978-981-32-9301-4_10
M3 - Contribution to book/anthology
AN - SCOPUS:85074639394
SN - 978-981-32-9300-7
SN - 978-981-32-9303-8
T3 - Ergebnisse der Mathematik und ihrer Grenzgebiete - 3. Folge / A Series of Modern Surveys in Mathematics
SP - 229
EP - 286
BT - Mordell–Weil Lattices
PB - Springer Singapore
ER -