Details
Original language | English |
---|---|
Pages (from-to) | 1253-1262 |
Number of pages | 10 |
Journal | Journal of Environmental Quality |
Volume | 41 |
Issue number | 4 |
Publication status | Published - 1 Jul 2012 |
Abstract
The German insignifi cance thresholds (GFS) for groundwater, derived with an added risk approach, will soon be adopted as trigger values for percolation water entering groundwater. Th e physicochemical properties of the vadose zone diff er considerably from those of groundwater, which may lead to diffi culties in the applicability of groundwater-derived GFS to percolation water. To test the applicability of the GFS to percolation water regarding the concentration level and the fi eld-scale variability, 46 sites in Northern Germany were sampled, including arable land, grassland, and forest, situated on three spatially dominant parent materials: sand, glacial loam, and loess. Concentrations of As, Ba, Cd, Co, Cr, Cu, Mo, Ni, Pb, Sb, Sn, V, Zn, and F were analyzed in percolation water from the transition between the unsaturated to the saturated zone. We compared median and 90th percentile values of the background concentrations with the GFS. In more than 10% of all samples, background concentrations of Cd, Co, Ni, V, or Zn exceeded the GFS. We evaluated the applicability of the GFS on fi eld-scale medians of background concentrations taking fi eld-scale interquartile distance and the bootstrap percentile confi dence interval of the fi eld scale median of trace element background concentrations into consideration. Statements about exceedance or nonexceedance of GFS values could only be made with acceptable statistical uncertainty (α ≤ 0.1) when operational median concentrations were about one third higher or lower than the corresponding GFS.
ASJC Scopus subject areas
- Environmental Science(all)
- Environmental Engineering
- Environmental Science(all)
- Water Science and Technology
- Environmental Science(all)
- Waste Management and Disposal
- Environmental Science(all)
- Pollution
- Environmental Science(all)
- Management, Monitoring, Policy and Law
Sustainable Development Goals
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Journal of Environmental Quality, Vol. 41, No. 4, 01.07.2012, p. 1253-1262.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Application of Groundwater Thresholds for Trace Elements on Percolation Water
T2 - A Case Study on Percolation Water from Northern German Lowlands
AU - Godbersen, L.
AU - Duijnisveld, W. H.M.
AU - Utermann, J.
AU - Gäbler, H. E.
AU - Kuhnt, G.
AU - Böttcher, J.
N1 - Copyright: Copyright 2013 Elsevier B.V., All rights reserved.
PY - 2012/7/1
Y1 - 2012/7/1
N2 - The German insignifi cance thresholds (GFS) for groundwater, derived with an added risk approach, will soon be adopted as trigger values for percolation water entering groundwater. Th e physicochemical properties of the vadose zone diff er considerably from those of groundwater, which may lead to diffi culties in the applicability of groundwater-derived GFS to percolation water. To test the applicability of the GFS to percolation water regarding the concentration level and the fi eld-scale variability, 46 sites in Northern Germany were sampled, including arable land, grassland, and forest, situated on three spatially dominant parent materials: sand, glacial loam, and loess. Concentrations of As, Ba, Cd, Co, Cr, Cu, Mo, Ni, Pb, Sb, Sn, V, Zn, and F were analyzed in percolation water from the transition between the unsaturated to the saturated zone. We compared median and 90th percentile values of the background concentrations with the GFS. In more than 10% of all samples, background concentrations of Cd, Co, Ni, V, or Zn exceeded the GFS. We evaluated the applicability of the GFS on fi eld-scale medians of background concentrations taking fi eld-scale interquartile distance and the bootstrap percentile confi dence interval of the fi eld scale median of trace element background concentrations into consideration. Statements about exceedance or nonexceedance of GFS values could only be made with acceptable statistical uncertainty (α ≤ 0.1) when operational median concentrations were about one third higher or lower than the corresponding GFS.
AB - The German insignifi cance thresholds (GFS) for groundwater, derived with an added risk approach, will soon be adopted as trigger values for percolation water entering groundwater. Th e physicochemical properties of the vadose zone diff er considerably from those of groundwater, which may lead to diffi culties in the applicability of groundwater-derived GFS to percolation water. To test the applicability of the GFS to percolation water regarding the concentration level and the fi eld-scale variability, 46 sites in Northern Germany were sampled, including arable land, grassland, and forest, situated on three spatially dominant parent materials: sand, glacial loam, and loess. Concentrations of As, Ba, Cd, Co, Cr, Cu, Mo, Ni, Pb, Sb, Sn, V, Zn, and F were analyzed in percolation water from the transition between the unsaturated to the saturated zone. We compared median and 90th percentile values of the background concentrations with the GFS. In more than 10% of all samples, background concentrations of Cd, Co, Ni, V, or Zn exceeded the GFS. We evaluated the applicability of the GFS on fi eld-scale medians of background concentrations taking fi eld-scale interquartile distance and the bootstrap percentile confi dence interval of the fi eld scale median of trace element background concentrations into consideration. Statements about exceedance or nonexceedance of GFS values could only be made with acceptable statistical uncertainty (α ≤ 0.1) when operational median concentrations were about one third higher or lower than the corresponding GFS.
UR - http://www.scopus.com/inward/record.url?scp=84864510523&partnerID=8YFLogxK
U2 - 10.2134/jeq2011.0218
DO - 10.2134/jeq2011.0218
M3 - Article
C2 - 22751069
AN - SCOPUS:84864510523
VL - 41
SP - 1253
EP - 1262
JO - Journal of Environmental Quality
JF - Journal of Environmental Quality
SN - 0047-2425
IS - 4
ER -