Details
Original language | English |
---|---|
Article number | 3561 |
Pages (from-to) | 1-18 |
Number of pages | 18 |
Journal | Remote sensing |
Volume | 12 |
Issue number | 21 |
Publication status | Published - 1 Nov 2020 |
Externally published | Yes |
Abstract
The ability of the Canadian agriculture sector to make better decisions and manage its operations more competitively in the long term is only as good as the information available to inform decision-making. At all levels of Government, a reliable flow of information between scientists, practitioners, policy-makers, and commodity groups is critical for developing and supporting agricultural policies and programs. Given the vastness and complexity of Canada’s agricultural regions, space-based remote sensing is one of the most reliable approaches to get detailed information describing the evolving state of the country’s environment. Agriculture and Agri-Food Canada (AAFC)-the Canadian federal department responsible for agriculture-produces the Annual Space-Based Crop Inventory (ACI) maps for Canada. These maps are valuable operational space-based remote sensing products which cover the agricultural land use and non-agricultural land cover found within Canada’s agricultural extent. Developing and implementing novel methods for improving these products are an ongoing priority of AAFC. Consequently, it is beneficial to implement advanced machine learning and big data processing methods along with open-access satellite imagery to effectively produce accurate ACI maps. In this study, for the first time, the Google Earth Engine (GEE) cloud computing platform was used along with an Artificial Neural Networks (ANN) algorithm and Sentinel-1,-2 images to produce an object-based ACI map for 2018. Furthermore, different limitations of the proposed method were discussed, and several suggestions were provided for future studies. The Overall Accuracy (OA) and Kappa Coefficient (KC) of the final 2018 ACI map using the proposed GEE cloud method were 77% and 0.74, respectively. Moreover, the average Producer Accuracy (PA) and User Accuracy (UA) for the 17 cropland classes were 79% and 77%, respectively. Although these levels of accuracies were slightly lower than those of the AAFC’s ACI map, this study demonstrated that the proposed cloud computing method should be investigated further because it was more efficient in terms of cost, time, computation, and automation.
Keywords
- Agriculture, Big data, Canada, Cloud computing, Cropland classification, Google earth engine, Neural network, Remote sensing, Sentinel
ASJC Scopus subject areas
- Earth and Planetary Sciences(all)
- General Earth and Planetary Sciences
Sustainable Development Goals
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Remote sensing, Vol. 12, No. 21, 3561, 01.11.2020, p. 1-18.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Application of google earth engine cloud computing platform, sentinel imagery, and neural networks for crop mapping in Canada
AU - Amani, Meisam
AU - Kakooei, Mohammad
AU - Moghimi, Armin
AU - Ghorbanian, Arsalan
AU - Ranjgar, Babak
AU - Mahdavi, Sahel
AU - Davidson, Andrew
AU - Fisette, Thierry
AU - Rollin, Patrick
AU - Brisco, Brian
AU - Mohammadzadeh, Ali
N1 - Publisher Copyright: © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2020/11/1
Y1 - 2020/11/1
N2 - The ability of the Canadian agriculture sector to make better decisions and manage its operations more competitively in the long term is only as good as the information available to inform decision-making. At all levels of Government, a reliable flow of information between scientists, practitioners, policy-makers, and commodity groups is critical for developing and supporting agricultural policies and programs. Given the vastness and complexity of Canada’s agricultural regions, space-based remote sensing is one of the most reliable approaches to get detailed information describing the evolving state of the country’s environment. Agriculture and Agri-Food Canada (AAFC)-the Canadian federal department responsible for agriculture-produces the Annual Space-Based Crop Inventory (ACI) maps for Canada. These maps are valuable operational space-based remote sensing products which cover the agricultural land use and non-agricultural land cover found within Canada’s agricultural extent. Developing and implementing novel methods for improving these products are an ongoing priority of AAFC. Consequently, it is beneficial to implement advanced machine learning and big data processing methods along with open-access satellite imagery to effectively produce accurate ACI maps. In this study, for the first time, the Google Earth Engine (GEE) cloud computing platform was used along with an Artificial Neural Networks (ANN) algorithm and Sentinel-1,-2 images to produce an object-based ACI map for 2018. Furthermore, different limitations of the proposed method were discussed, and several suggestions were provided for future studies. The Overall Accuracy (OA) and Kappa Coefficient (KC) of the final 2018 ACI map using the proposed GEE cloud method were 77% and 0.74, respectively. Moreover, the average Producer Accuracy (PA) and User Accuracy (UA) for the 17 cropland classes were 79% and 77%, respectively. Although these levels of accuracies were slightly lower than those of the AAFC’s ACI map, this study demonstrated that the proposed cloud computing method should be investigated further because it was more efficient in terms of cost, time, computation, and automation.
AB - The ability of the Canadian agriculture sector to make better decisions and manage its operations more competitively in the long term is only as good as the information available to inform decision-making. At all levels of Government, a reliable flow of information between scientists, practitioners, policy-makers, and commodity groups is critical for developing and supporting agricultural policies and programs. Given the vastness and complexity of Canada’s agricultural regions, space-based remote sensing is one of the most reliable approaches to get detailed information describing the evolving state of the country’s environment. Agriculture and Agri-Food Canada (AAFC)-the Canadian federal department responsible for agriculture-produces the Annual Space-Based Crop Inventory (ACI) maps for Canada. These maps are valuable operational space-based remote sensing products which cover the agricultural land use and non-agricultural land cover found within Canada’s agricultural extent. Developing and implementing novel methods for improving these products are an ongoing priority of AAFC. Consequently, it is beneficial to implement advanced machine learning and big data processing methods along with open-access satellite imagery to effectively produce accurate ACI maps. In this study, for the first time, the Google Earth Engine (GEE) cloud computing platform was used along with an Artificial Neural Networks (ANN) algorithm and Sentinel-1,-2 images to produce an object-based ACI map for 2018. Furthermore, different limitations of the proposed method were discussed, and several suggestions were provided for future studies. The Overall Accuracy (OA) and Kappa Coefficient (KC) of the final 2018 ACI map using the proposed GEE cloud method were 77% and 0.74, respectively. Moreover, the average Producer Accuracy (PA) and User Accuracy (UA) for the 17 cropland classes were 79% and 77%, respectively. Although these levels of accuracies were slightly lower than those of the AAFC’s ACI map, this study demonstrated that the proposed cloud computing method should be investigated further because it was more efficient in terms of cost, time, computation, and automation.
KW - Agriculture
KW - Big data
KW - Canada
KW - Cloud computing
KW - Cropland classification
KW - Google earth engine
KW - Neural network
KW - Remote sensing
KW - Sentinel
UR - http://www.scopus.com/inward/record.url?scp=85094844639&partnerID=8YFLogxK
U2 - 10.3390/rs12213561
DO - 10.3390/rs12213561
M3 - Article
AN - SCOPUS:85094844639
VL - 12
SP - 1
EP - 18
JO - Remote sensing
JF - Remote sensing
SN - 2072-4292
IS - 21
M1 - 3561
ER -