Details
Original language | English |
---|---|
Pages (from-to) | 1-28 |
Number of pages | 28 |
Journal | Contributions to Mineralogy and Petrology |
Volume | 169 |
Issue number | 4 |
Publication status | Published - 11 Apr 2015 |
Abstract
Replenished axial melt lenses at fast-spreading mid-oceanic ridges may move upward and intrude into the overlying hydrothermally altered sheeted dikes, resulting in high-grade contact metamorphism with the potential to trigger anatexis in the roof rocks. Assumed products of this process are anatectic melts of felsic composition and granoblastic, two-pyroxene hornfels, representing the residue after partial melting. Integrated Ocean Drilling Program Expeditions 309, 312, and 335 at Site 1256 (eastern equatorial Pacific) sampled such a fossilized oceanic magma chamber. In this study, we simulated magma chamber roof rock anatectic processes by performing partial melting experiments using six different protoliths from the Site 1256 sheeted dike complex, spanning a lithological range from poorly to strongly altered basalts to partially or fully recrystallized granoblastic hornfels. Results show that extensively altered starting material lacking primary magmatic minerals cannot reproduce the chemistry of natural felsic rocks recovered in ridge environments, especially elements sensitive to hydrothermal alteration (e.g., K, Cl). Natural geochemical trends are reproduced through partial melting of moderately altered basalts from the lower sheeted dikes. Two-pyroxene hornfels, the assumed residue, were reproduced only at low melting degrees (<20 vol%). The overall amphibole absence in the experiments confirms the natural observation that amphibole is not produced during peak metamorphism. Comparing experimental products with the natural equivalents reveals that water activity (aH2O) was significantly reduced during anatectic processes, mainly based on lower melt aluminum oxide and lower plagioclase anorthite content at lower aH2O. High silica melt at the expected temperature (1000–1050 °C; peak thermal overprint of two-pyroxene hornfels) could only be reproduced in the experimental series performed at aH2O = 0.1.
Keywords
- Conductive boundary layer, Experimental petrology, Fast-spreading mid-ocean ridge, Granoblastic hornfels, Oceanic plagiogranite, Partial melting
ASJC Scopus subject areas
- Earth and Planetary Sciences(all)
- Geophysics
- Earth and Planetary Sciences(all)
- Geochemistry and Petrology
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Contributions to Mineralogy and Petrology, Vol. 169, No. 4, 11.04.2015, p. 1-28.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Anatexis at the roof of an oceanic magma chamber at IODP Site 1256 (equatorial Pacific)
T2 - an experimental study
AU - Erdmann, Martin
AU - Fischer, Lennart A.
AU - France, Lydéric
AU - Zhang, Chao
AU - Godard, Marguerite
AU - Koepke, Jürgen
N1 - Funding Information: We thank Otto Dietrich and Julian Feige for their careful sample preparation. The manuscript has been substantially improved after thorough reviews by M. Perfit and two anonymous reviewers. This research used samples and/or data provided by the International Ocean Drilling Program (IODP). IODP is sponsored by the US National Science Foundation (NSF) and participating countries under management of the Consortium for Ocean Leadership (COL). Funding for this research was provided by grants from the Deutsche Forschungsgemeinschaft (KO 1723/13).
PY - 2015/4/11
Y1 - 2015/4/11
N2 - Replenished axial melt lenses at fast-spreading mid-oceanic ridges may move upward and intrude into the overlying hydrothermally altered sheeted dikes, resulting in high-grade contact metamorphism with the potential to trigger anatexis in the roof rocks. Assumed products of this process are anatectic melts of felsic composition and granoblastic, two-pyroxene hornfels, representing the residue after partial melting. Integrated Ocean Drilling Program Expeditions 309, 312, and 335 at Site 1256 (eastern equatorial Pacific) sampled such a fossilized oceanic magma chamber. In this study, we simulated magma chamber roof rock anatectic processes by performing partial melting experiments using six different protoliths from the Site 1256 sheeted dike complex, spanning a lithological range from poorly to strongly altered basalts to partially or fully recrystallized granoblastic hornfels. Results show that extensively altered starting material lacking primary magmatic minerals cannot reproduce the chemistry of natural felsic rocks recovered in ridge environments, especially elements sensitive to hydrothermal alteration (e.g., K, Cl). Natural geochemical trends are reproduced through partial melting of moderately altered basalts from the lower sheeted dikes. Two-pyroxene hornfels, the assumed residue, were reproduced only at low melting degrees (<20 vol%). The overall amphibole absence in the experiments confirms the natural observation that amphibole is not produced during peak metamorphism. Comparing experimental products with the natural equivalents reveals that water activity (aH2O) was significantly reduced during anatectic processes, mainly based on lower melt aluminum oxide and lower plagioclase anorthite content at lower aH2O. High silica melt at the expected temperature (1000–1050 °C; peak thermal overprint of two-pyroxene hornfels) could only be reproduced in the experimental series performed at aH2O = 0.1.
AB - Replenished axial melt lenses at fast-spreading mid-oceanic ridges may move upward and intrude into the overlying hydrothermally altered sheeted dikes, resulting in high-grade contact metamorphism with the potential to trigger anatexis in the roof rocks. Assumed products of this process are anatectic melts of felsic composition and granoblastic, two-pyroxene hornfels, representing the residue after partial melting. Integrated Ocean Drilling Program Expeditions 309, 312, and 335 at Site 1256 (eastern equatorial Pacific) sampled such a fossilized oceanic magma chamber. In this study, we simulated magma chamber roof rock anatectic processes by performing partial melting experiments using six different protoliths from the Site 1256 sheeted dike complex, spanning a lithological range from poorly to strongly altered basalts to partially or fully recrystallized granoblastic hornfels. Results show that extensively altered starting material lacking primary magmatic minerals cannot reproduce the chemistry of natural felsic rocks recovered in ridge environments, especially elements sensitive to hydrothermal alteration (e.g., K, Cl). Natural geochemical trends are reproduced through partial melting of moderately altered basalts from the lower sheeted dikes. Two-pyroxene hornfels, the assumed residue, were reproduced only at low melting degrees (<20 vol%). The overall amphibole absence in the experiments confirms the natural observation that amphibole is not produced during peak metamorphism. Comparing experimental products with the natural equivalents reveals that water activity (aH2O) was significantly reduced during anatectic processes, mainly based on lower melt aluminum oxide and lower plagioclase anorthite content at lower aH2O. High silica melt at the expected temperature (1000–1050 °C; peak thermal overprint of two-pyroxene hornfels) could only be reproduced in the experimental series performed at aH2O = 0.1.
KW - Conductive boundary layer
KW - Experimental petrology
KW - Fast-spreading mid-ocean ridge
KW - Granoblastic hornfels
KW - Oceanic plagiogranite
KW - Partial melting
UR - http://www.scopus.com/inward/record.url?scp=84928154482&partnerID=8YFLogxK
U2 - 10.1007/s00410-015-1136-5
DO - 10.1007/s00410-015-1136-5
M3 - Article
AN - SCOPUS:84928154482
VL - 169
SP - 1
EP - 28
JO - Contributions to Mineralogy and Petrology
JF - Contributions to Mineralogy and Petrology
SN - 0010-7999
IS - 4
ER -