Details
Original language | English |
---|---|
Pages (from-to) | 313-318 |
Number of pages | 6 |
Journal | Sensors and Actuators, B: Chemical |
Volume | 158 |
Issue number | 1 |
Publication status | Published - 15 Nov 2011 |
Externally published | Yes |
Abstract
An electrochemical biosensor was optimised for the analysis of volatile alcohols directly from the gas phase without prior absorption or pre-concentration. The sensor is based on the alcohol oxidase (Pichia pastoris) catalyzed conversion of ethanol and the amperometric detection of the generated hydrogen peroxide. Key part of the three-electrode set-up was a gas-diffusion working electrode (potential: +600 mV vs. Ag/AgCl) that consisted of a porous Teflon membrane coated with a thin platinum layer. Headspace samples were analysed for alcohols and used to derive alcohol concentrations in the liquid phase. The biosensor had a sensitivity of 3.43 μA/mM for ethanol, a response time of 69 s, a linear dynamic range of 0.10-30 mM, a theoretical detection limit (3 < S/N) of 9.9 μM, and a stability of 86% during continuous operation (18 h @ 1 mM ethanol). Using one sensor on three consecutive days, the mean coefficient of variation was 1.3% (three measurements each day @ 10 mM ethanol). Alcohol contents of three apple juices determined with the biosensor were in the range 0.30 g/l-0.67 g/l (equivalent to 6.51 mM-14.5 mM). However, ethanol contents determined by high pressure liquid chromatography coupled to refractive index detection (HPLC-RI) and by a commercial enzyme test kit based on alcohol dehydrogenase ranged from 0.12 g/l to 0.38 g/l (equivalent to 2.60 mM-8.25 mM). Both indicate that the biosensor detected alcohols other than ethanol in the apple juices. HPLC-RI coupled to the biosensor in a flow-through configuration demonstrated that the biosensor detected methanol concomitant to ethanol. Thus, the biosensor could perform a qualitative analysis of the total content of volatile alcohols in apple juices by analysing the gas phase above the sample. This offers the additional advantage that possible, non-volatile interfering substances in the liquid sample cannot impair the measurement.
Keywords
- Alcohol oxidase, Amperometric biosensor, Apple juice, Ethanol, Gas-phase sensor, Methanol
ASJC Scopus subject areas
- Materials Science(all)
- Electronic, Optical and Magnetic Materials
- Physics and Astronomy(all)
- Instrumentation
- Physics and Astronomy(all)
- Condensed Matter Physics
- Materials Science(all)
- Surfaces, Coatings and Films
- Materials Science(all)
- Metals and Alloys
- Engineering(all)
- Electrical and Electronic Engineering
- Materials Science(all)
- Materials Chemistry
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Sensors and Actuators, B: Chemical, Vol. 158, No. 1, 15.11.2011, p. 313-318.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Analysis of volatile alcohols in apple juices by an electrochemical biosensor measuring in the headspace above the liquid
AU - Hämmerle, Martin
AU - Hilgert, Karin
AU - Horn, Marcus A.
AU - Moos, Ralf
N1 - Funding Information: The authors like to thank Klaus Müller from the optics workshop of the University of Bayreuth for preparing the platinum covered Teflon membranes. This work was financially supported by the German Research Council ( Deutsche Forschungsgemeinschaft : HA4424/1-3). Copyright: Copyright 2011 Elsevier B.V., All rights reserved.
PY - 2011/11/15
Y1 - 2011/11/15
N2 - An electrochemical biosensor was optimised for the analysis of volatile alcohols directly from the gas phase without prior absorption or pre-concentration. The sensor is based on the alcohol oxidase (Pichia pastoris) catalyzed conversion of ethanol and the amperometric detection of the generated hydrogen peroxide. Key part of the three-electrode set-up was a gas-diffusion working electrode (potential: +600 mV vs. Ag/AgCl) that consisted of a porous Teflon membrane coated with a thin platinum layer. Headspace samples were analysed for alcohols and used to derive alcohol concentrations in the liquid phase. The biosensor had a sensitivity of 3.43 μA/mM for ethanol, a response time of 69 s, a linear dynamic range of 0.10-30 mM, a theoretical detection limit (3 < S/N) of 9.9 μM, and a stability of 86% during continuous operation (18 h @ 1 mM ethanol). Using one sensor on three consecutive days, the mean coefficient of variation was 1.3% (three measurements each day @ 10 mM ethanol). Alcohol contents of three apple juices determined with the biosensor were in the range 0.30 g/l-0.67 g/l (equivalent to 6.51 mM-14.5 mM). However, ethanol contents determined by high pressure liquid chromatography coupled to refractive index detection (HPLC-RI) and by a commercial enzyme test kit based on alcohol dehydrogenase ranged from 0.12 g/l to 0.38 g/l (equivalent to 2.60 mM-8.25 mM). Both indicate that the biosensor detected alcohols other than ethanol in the apple juices. HPLC-RI coupled to the biosensor in a flow-through configuration demonstrated that the biosensor detected methanol concomitant to ethanol. Thus, the biosensor could perform a qualitative analysis of the total content of volatile alcohols in apple juices by analysing the gas phase above the sample. This offers the additional advantage that possible, non-volatile interfering substances in the liquid sample cannot impair the measurement.
AB - An electrochemical biosensor was optimised for the analysis of volatile alcohols directly from the gas phase without prior absorption or pre-concentration. The sensor is based on the alcohol oxidase (Pichia pastoris) catalyzed conversion of ethanol and the amperometric detection of the generated hydrogen peroxide. Key part of the three-electrode set-up was a gas-diffusion working electrode (potential: +600 mV vs. Ag/AgCl) that consisted of a porous Teflon membrane coated with a thin platinum layer. Headspace samples were analysed for alcohols and used to derive alcohol concentrations in the liquid phase. The biosensor had a sensitivity of 3.43 μA/mM for ethanol, a response time of 69 s, a linear dynamic range of 0.10-30 mM, a theoretical detection limit (3 < S/N) of 9.9 μM, and a stability of 86% during continuous operation (18 h @ 1 mM ethanol). Using one sensor on three consecutive days, the mean coefficient of variation was 1.3% (three measurements each day @ 10 mM ethanol). Alcohol contents of three apple juices determined with the biosensor were in the range 0.30 g/l-0.67 g/l (equivalent to 6.51 mM-14.5 mM). However, ethanol contents determined by high pressure liquid chromatography coupled to refractive index detection (HPLC-RI) and by a commercial enzyme test kit based on alcohol dehydrogenase ranged from 0.12 g/l to 0.38 g/l (equivalent to 2.60 mM-8.25 mM). Both indicate that the biosensor detected alcohols other than ethanol in the apple juices. HPLC-RI coupled to the biosensor in a flow-through configuration demonstrated that the biosensor detected methanol concomitant to ethanol. Thus, the biosensor could perform a qualitative analysis of the total content of volatile alcohols in apple juices by analysing the gas phase above the sample. This offers the additional advantage that possible, non-volatile interfering substances in the liquid sample cannot impair the measurement.
KW - Alcohol oxidase
KW - Amperometric biosensor
KW - Apple juice
KW - Ethanol
KW - Gas-phase sensor
KW - Methanol
UR - http://www.scopus.com/inward/record.url?scp=79960449144&partnerID=8YFLogxK
U2 - 10.1016/j.snb.2011.06.026
DO - 10.1016/j.snb.2011.06.026
M3 - Article
AN - SCOPUS:79960449144
VL - 158
SP - 313
EP - 318
JO - Sensors and Actuators, B: Chemical
JF - Sensors and Actuators, B: Chemical
SN - 0925-4005
IS - 1
ER -