Analysis of the accuracy of actuation electronics in the laser interferometer space antenna pathfinder

Research output: Contribution to journalArticleResearchpeer review

Authors

  • M. Armano
  • H. Audley
  • J. Baird
  • M. Born
  • D. Bortoluzzi
  • N. Cardines
  • E. Castelli
  • A. Cavalleri
  • A. Cesarini
  • A. M. Cruise
  • K. Danzmann
  • M. De Deus Silva
  • G. Dixon
  • R. Dolesi
  • L. Ferraioli
  • V. Ferroni
  • E. D. Fitzsimons
  • M. Freschi
  • L. Gesa
  • D. Giardini
  • F. Gibert
  • R. Giusteri
  • C. Grimani
  • J. Grzymisch
  • I. Harrison
  • M.-s. Hartig
  • G. Heinzel
  • M. Hewitson
  • D. Hollington
  • D. Hoyland
  • M. Hueller
  • H. Inchauspé
  • O. Jennrich
  • P. Jetzer
  • N. Karnesis
  • B. Kaune
  • C. J. Killow
  • N. Korsakova
  • J. P. López-zaragoza
  • R. Maarschalkerweerd
  • D. Mance
  • V. Martín
  • L. Martin-polo
  • J. Martino
  • F. Martin-porqueras
  • I. Mateos
  • P. W. Mcnamara
  • J. Mendes
  • L. Mendes
  • N. Meshksar
  • M. Nofrarias
  • S. Paczkowski
  • M. Perreur-lloyd
  • A. Petiteau
  • P. Pivato
  • E. Plagnol
  • J. Ramos-castro
  • J. Reiche
  • F. Rivas
  • D. I. Robertson
  • G. Russano
  • J. Slutsky
  • C. F. Sopuerta
  • T. Sumner
  • D. Texier
  • J. Ten Pierick
  • J. I. Thorpe
  • D. Vetrugno
  • S. Vitale
  • G. Wanner
  • H. Ward
  • P. J. Wass
  • W. J. Weber
  • L. Wissel
  • A. Wittchen
  • P. Zweifel

Research Organisations

External Research Organisations

  • Max Planck Institute for Gravitational Physics (Albert Einstein Institute)
  • Universite Paris 7
View graph of relations

Details

Original languageEnglish
Article number045003
JournalReview of scientific instruments
Volume91
Issue number4
Publication statusPublished - 9 Apr 2020

Abstract

The Laser Interferometer Space Antenna Pathfinder (LPF) main observable, labeled Δg, is the differential force per unit mass acting on the two test masses under free fall conditions after the contribution of all non-gravitational forces has been compensated. At low frequencies, the differential force is compensated by an applied electrostatic actuation force, which then must be subtracted from the measured acceleration to obtain Δg. Any inaccuracy in the actuation force contaminates the residual acceleration. This study investigates the accuracy of the electrostatic actuation system and its impact on the LPF main observable. It is shown that the inaccuracy is mainly caused by the rounding errors in the waveform processing and also by the random error caused by the analog to digital converter random noise in the control loop. Both errors are one order of magnitude smaller than the resolution of the commanded voltages. We developed a simulator based on the LPF design to compute the close-to-reality actuation voltages and, consequently, the resulting actuation forces. The simulator is applied during post-processing the LPF data.

ASJC Scopus subject areas

Cite this

Analysis of the accuracy of actuation electronics in the laser interferometer space antenna pathfinder. / Armano, M.; Audley, H.; Baird, J. et al.
In: Review of scientific instruments, Vol. 91, No. 4, 045003, 09.04.2020.

Research output: Contribution to journalArticleResearchpeer review

Armano, M, Audley, H, Baird, J, Born, M, Bortoluzzi, D, Cardines, N, Castelli, E, Cavalleri, A, Cesarini, A, Cruise, AM, Danzmann, K, De Deus Silva, M, Dixon, G, Dolesi, R, Ferraioli, L, Ferroni, V, Fitzsimons, ED, Freschi, M, Gesa, L, Giardini, D, Gibert, F, Giusteri, R, Grimani, C, Grzymisch, J, Harrison, I, Hartig, M, Heinzel, G, Hewitson, M, Hollington, D, Hoyland, D, Hueller, M, Inchauspé, H, Jennrich, O, Jetzer, P, Karnesis, N, Kaune, B, Killow, CJ, Korsakova, N, López-zaragoza, JP, Maarschalkerweerd, R, Mance, D, Martín, V, Martin-polo, L, Martino, J, Martin-porqueras, F, Mateos, I, Mcnamara, PW, Mendes, J, Mendes, L, Meshksar, N, Nofrarias, M, Paczkowski, S, Perreur-lloyd, M, Petiteau, A, Pivato, P, Plagnol, E, Ramos-castro, J, Reiche, J, Rivas, F, Robertson, DI, Russano, G, Slutsky, J, Sopuerta, CF, Sumner, T, Texier, D, Ten Pierick, J, Thorpe, JI, Vetrugno, D, Vitale, S, Wanner, G, Ward, H, Wass, PJ, Weber, WJ, Wissel, L, Wittchen, A & Zweifel, P 2020, 'Analysis of the accuracy of actuation electronics in the laser interferometer space antenna pathfinder', Review of scientific instruments, vol. 91, no. 4, 045003. https://doi.org/10.1063/1.5140406
Armano, M., Audley, H., Baird, J., Born, M., Bortoluzzi, D., Cardines, N., Castelli, E., Cavalleri, A., Cesarini, A., Cruise, A. M., Danzmann, K., De Deus Silva, M., Dixon, G., Dolesi, R., Ferraioli, L., Ferroni, V., Fitzsimons, E. D., Freschi, M., Gesa, L., ... Zweifel, P. (2020). Analysis of the accuracy of actuation electronics in the laser interferometer space antenna pathfinder. Review of scientific instruments, 91(4), Article 045003. https://doi.org/10.1063/1.5140406
Armano M, Audley H, Baird J, Born M, Bortoluzzi D, Cardines N et al. Analysis of the accuracy of actuation electronics in the laser interferometer space antenna pathfinder. Review of scientific instruments. 2020 Apr 9;91(4):045003. doi: 10.1063/1.5140406
Download
@article{b0a0fd6c2cee4865a9e90d51b45c7934,
title = "Analysis of the accuracy of actuation electronics in the laser interferometer space antenna pathfinder",
abstract = "The Laser Interferometer Space Antenna Pathfinder (LPF) main observable, labeled Δg, is the differential force per unit mass acting on the two test masses under free fall conditions after the contribution of all non-gravitational forces has been compensated. At low frequencies, the differential force is compensated by an applied electrostatic actuation force, which then must be subtracted from the measured acceleration to obtain Δg. Any inaccuracy in the actuation force contaminates the residual acceleration. This study investigates the accuracy of the electrostatic actuation system and its impact on the LPF main observable. It is shown that the inaccuracy is mainly caused by the rounding errors in the waveform processing and also by the random error caused by the analog to digital converter random noise in the control loop. Both errors are one order of magnitude smaller than the resolution of the commanded voltages. We developed a simulator based on the LPF design to compute the close-to-reality actuation voltages and, consequently, the resulting actuation forces. The simulator is applied during post-processing the LPF data.",
author = "M. Armano and H. Audley and J. Baird and M. Born and D. Bortoluzzi and N. Cardines and E. Castelli and A. Cavalleri and A. Cesarini and Cruise, {A. M.} and K. Danzmann and {De Deus Silva}, M. and G. Dixon and R. Dolesi and L. Ferraioli and V. Ferroni and Fitzsimons, {E. D.} and M. Freschi and L. Gesa and D. Giardini and F. Gibert and R. Giusteri and C. Grimani and J. Grzymisch and I. Harrison and M.-s. Hartig and G. Heinzel and M. Hewitson and D. Hollington and D. Hoyland and M. Hueller and H. Inchausp{\'e} and O. Jennrich and P. Jetzer and N. Karnesis and B. Kaune and Killow, {C. J.} and N. Korsakova and L{\'o}pez-zaragoza, {J. P.} and R. Maarschalkerweerd and D. Mance and V. Mart{\'i}n and L. Martin-polo and J. Martino and F. Martin-porqueras and I. Mateos and Mcnamara, {P. W.} and J. Mendes and L. Mendes and N. Meshksar and M. Nofrarias and S. Paczkowski and M. Perreur-lloyd and A. Petiteau and P. Pivato and E. Plagnol and J. Ramos-castro and J. Reiche and F. Rivas and Robertson, {D. I.} and G. Russano and J. Slutsky and Sopuerta, {C. F.} and T. Sumner and D. Texier and {Ten Pierick}, J. and Thorpe, {J. I.} and D. Vetrugno and S. Vitale and G. Wanner and H. Ward and Wass, {P. J.} and Weber, {W. J.} and L. Wissel and A. Wittchen and P. Zweifel",
note = "Funding information: The French contribution has been supported by the CNES (Accord Specific de Projet Grant No. CNES 1316634/CNRS 103747), the CNRS, the Observatoire de Paris, and University Paris-Diderot. E. Plagnol and H. Inchausp{\'e} would also like to acknowledge the financial support of the UnivEarthS Labex program at Sorbonne Paris Cit{\'e} (Grant Nos. ANR-10-LABX-0023 and ANR-11-IDEX-0005-02). The UK groups wish to acknowledge support from the United Kingdom Space Agency (UKSA), the University of Glasgow, the University of Birmingham, Imperial College, and the Scottish Universities Physics Alliance (SUPA). This work was supported by ETH Research Grant No. ETH-05 16-2, and it has been made possible by the LISA Pathfinder mission, which is part of the space-science program of the European Space Agency. N. Korsakova would like to thank the support from the CNES Fellowship. The Albert-Einstein-Institut acknowledges the support of the German Space Agency, DLR. The work is supported by the Federal Ministry for Economic Affairs and Energy based on a resolution of the German Bundestag (Grant Nos. FKZ 50OQ0501 and FKZ 50OQ1601). The Swiss contribution acknowledges the support of the Swiss Space Office (SSO) via the PRODEX Programme of the ESA. L. Ferraioli is supported by the Swiss National Science Foundation. The Spanish contribution has been supported by Contract Nos. AYA2010-15709 (MICINN), ESP2013-47637-P, ESP2015-67234-P, and ESP2017-90084-P (MINECO). Support from AGAUR (Gener-alitat de Catalunya) contract 2017-SGR-1469 is also acknowledged. M. Nofrarias acknowledges support from Fundacion General CSIC (Programa ComFuturo). F. Rivas acknowledges an FPI contract from MINECO. The Italian contribution has been supported by the Agenzia Spaziale Italiana and the Istituto Nazionale di Fisica Nucleare.",
year = "2020",
month = apr,
day = "9",
doi = "10.1063/1.5140406",
language = "English",
volume = "91",
journal = "Review of scientific instruments",
issn = "0034-6748",
publisher = "American Institute of Physics",
number = "4",

}

Download

TY - JOUR

T1 - Analysis of the accuracy of actuation electronics in the laser interferometer space antenna pathfinder

AU - Armano, M.

AU - Audley, H.

AU - Baird, J.

AU - Born, M.

AU - Bortoluzzi, D.

AU - Cardines, N.

AU - Castelli, E.

AU - Cavalleri, A.

AU - Cesarini, A.

AU - Cruise, A. M.

AU - Danzmann, K.

AU - De Deus Silva, M.

AU - Dixon, G.

AU - Dolesi, R.

AU - Ferraioli, L.

AU - Ferroni, V.

AU - Fitzsimons, E. D.

AU - Freschi, M.

AU - Gesa, L.

AU - Giardini, D.

AU - Gibert, F.

AU - Giusteri, R.

AU - Grimani, C.

AU - Grzymisch, J.

AU - Harrison, I.

AU - Hartig, M.-s.

AU - Heinzel, G.

AU - Hewitson, M.

AU - Hollington, D.

AU - Hoyland, D.

AU - Hueller, M.

AU - Inchauspé, H.

AU - Jennrich, O.

AU - Jetzer, P.

AU - Karnesis, N.

AU - Kaune, B.

AU - Killow, C. J.

AU - Korsakova, N.

AU - López-zaragoza, J. P.

AU - Maarschalkerweerd, R.

AU - Mance, D.

AU - Martín, V.

AU - Martin-polo, L.

AU - Martino, J.

AU - Martin-porqueras, F.

AU - Mateos, I.

AU - Mcnamara, P. W.

AU - Mendes, J.

AU - Mendes, L.

AU - Meshksar, N.

AU - Nofrarias, M.

AU - Paczkowski, S.

AU - Perreur-lloyd, M.

AU - Petiteau, A.

AU - Pivato, P.

AU - Plagnol, E.

AU - Ramos-castro, J.

AU - Reiche, J.

AU - Rivas, F.

AU - Robertson, D. I.

AU - Russano, G.

AU - Slutsky, J.

AU - Sopuerta, C. F.

AU - Sumner, T.

AU - Texier, D.

AU - Ten Pierick, J.

AU - Thorpe, J. I.

AU - Vetrugno, D.

AU - Vitale, S.

AU - Wanner, G.

AU - Ward, H.

AU - Wass, P. J.

AU - Weber, W. J.

AU - Wissel, L.

AU - Wittchen, A.

AU - Zweifel, P.

N1 - Funding information: The French contribution has been supported by the CNES (Accord Specific de Projet Grant No. CNES 1316634/CNRS 103747), the CNRS, the Observatoire de Paris, and University Paris-Diderot. E. Plagnol and H. Inchauspé would also like to acknowledge the financial support of the UnivEarthS Labex program at Sorbonne Paris Cité (Grant Nos. ANR-10-LABX-0023 and ANR-11-IDEX-0005-02). The UK groups wish to acknowledge support from the United Kingdom Space Agency (UKSA), the University of Glasgow, the University of Birmingham, Imperial College, and the Scottish Universities Physics Alliance (SUPA). This work was supported by ETH Research Grant No. ETH-05 16-2, and it has been made possible by the LISA Pathfinder mission, which is part of the space-science program of the European Space Agency. N. Korsakova would like to thank the support from the CNES Fellowship. The Albert-Einstein-Institut acknowledges the support of the German Space Agency, DLR. The work is supported by the Federal Ministry for Economic Affairs and Energy based on a resolution of the German Bundestag (Grant Nos. FKZ 50OQ0501 and FKZ 50OQ1601). The Swiss contribution acknowledges the support of the Swiss Space Office (SSO) via the PRODEX Programme of the ESA. L. Ferraioli is supported by the Swiss National Science Foundation. The Spanish contribution has been supported by Contract Nos. AYA2010-15709 (MICINN), ESP2013-47637-P, ESP2015-67234-P, and ESP2017-90084-P (MINECO). Support from AGAUR (Gener-alitat de Catalunya) contract 2017-SGR-1469 is also acknowledged. M. Nofrarias acknowledges support from Fundacion General CSIC (Programa ComFuturo). F. Rivas acknowledges an FPI contract from MINECO. The Italian contribution has been supported by the Agenzia Spaziale Italiana and the Istituto Nazionale di Fisica Nucleare.

PY - 2020/4/9

Y1 - 2020/4/9

N2 - The Laser Interferometer Space Antenna Pathfinder (LPF) main observable, labeled Δg, is the differential force per unit mass acting on the two test masses under free fall conditions after the contribution of all non-gravitational forces has been compensated. At low frequencies, the differential force is compensated by an applied electrostatic actuation force, which then must be subtracted from the measured acceleration to obtain Δg. Any inaccuracy in the actuation force contaminates the residual acceleration. This study investigates the accuracy of the electrostatic actuation system and its impact on the LPF main observable. It is shown that the inaccuracy is mainly caused by the rounding errors in the waveform processing and also by the random error caused by the analog to digital converter random noise in the control loop. Both errors are one order of magnitude smaller than the resolution of the commanded voltages. We developed a simulator based on the LPF design to compute the close-to-reality actuation voltages and, consequently, the resulting actuation forces. The simulator is applied during post-processing the LPF data.

AB - The Laser Interferometer Space Antenna Pathfinder (LPF) main observable, labeled Δg, is the differential force per unit mass acting on the two test masses under free fall conditions after the contribution of all non-gravitational forces has been compensated. At low frequencies, the differential force is compensated by an applied electrostatic actuation force, which then must be subtracted from the measured acceleration to obtain Δg. Any inaccuracy in the actuation force contaminates the residual acceleration. This study investigates the accuracy of the electrostatic actuation system and its impact on the LPF main observable. It is shown that the inaccuracy is mainly caused by the rounding errors in the waveform processing and also by the random error caused by the analog to digital converter random noise in the control loop. Both errors are one order of magnitude smaller than the resolution of the commanded voltages. We developed a simulator based on the LPF design to compute the close-to-reality actuation voltages and, consequently, the resulting actuation forces. The simulator is applied during post-processing the LPF data.

UR - http://www.scopus.com/inward/record.url?scp=85083321476&partnerID=8YFLogxK

U2 - 10.1063/1.5140406

DO - 10.1063/1.5140406

M3 - Article

VL - 91

JO - Review of scientific instruments

JF - Review of scientific instruments

SN - 0034-6748

IS - 4

M1 - 045003

ER -