Details
Original language | English |
---|---|
Pages (from-to) | 5740-5758 |
Number of pages | 19 |
Journal | Journal of Soil Science and Plant Nutrition |
Volume | 24 |
Issue number | 3 |
Early online date | 15 Jul 2024 |
Publication status | Published - Sept 2024 |
Abstract
Soil salinity is considered one of the major global challenges that agricultural production is currently facing. This condition, together with the increasing contamination with emerging pollutants, poses a serious risk for global food security. As efforts are made to develop nature-based solutions, bioremediation strategies have been implemented to harness different living organisms and mitigate environmental pollution. Halophytes grow in highly saline environment and can be the solution to valorize salt-degraded areas where other crops cannot grow. The aim of this work is to evaluate the physiological response of Salicornia europaea grown under different conditions and its potential to extract sodium (Na) and copper (Cu) from different culture media. Different experiments were conducted with S. europaea cultivated in hydroponics and in substrate with and without biochar including different Cu (0, 5 and 10 mg L-1 CuCl2) and Na (7.5 and 15 g L-1 NaCl) concentrations. The growth in hydroponic media under different salinities reveals that this halophyte can extract up to 80% and 55% of the initial Na content when growing at 7.5 g L-1 and 15 g L-1 NaCl, respectively. In addition, S. europaea tolerates high Cu concentration, accumulating up to 1.61 mg g-1 DW in roots when exposed to 10 mg L-1 CuCl2 and 7.5 g L-1 NaCl. Plants grown in substrate show a different behavior, being even more tolerant to higher Cu concentrations. In addition, the presence of biochar in the substrate improves plant growth and provides a greater quantity of micronutrients. These results show the potential of S. europaea to be used in the phytoremediation process.
Keywords
- Copper toxicity, Halophytes, Heavy metals, Nature-based solution, Phytoremediation, Salinity
ASJC Scopus subject areas
- Agricultural and Biological Sciences(all)
- Agronomy and Crop Science
- Agricultural and Biological Sciences(all)
- Soil Science
- Agricultural and Biological Sciences(all)
- Plant Science
Sustainable Development Goals
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Journal of Soil Science and Plant Nutrition, Vol. 24, No. 3, 09.2024, p. 5740-5758.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Analysis of the Ability of Marsh Samphire (Salicornia europaea) to Extract Environmentally Relevant Elements from Different Culture Media
T2 - Contribution of Biochar to Plant Nutrition and Growth
AU - Turcios, Ariel E.
AU - Gornati, Diego
AU - Papenbrock, Jutta
N1 - Publisher Copyright: © The Author(s) 2024.
PY - 2024/9
Y1 - 2024/9
N2 - Soil salinity is considered one of the major global challenges that agricultural production is currently facing. This condition, together with the increasing contamination with emerging pollutants, poses a serious risk for global food security. As efforts are made to develop nature-based solutions, bioremediation strategies have been implemented to harness different living organisms and mitigate environmental pollution. Halophytes grow in highly saline environment and can be the solution to valorize salt-degraded areas where other crops cannot grow. The aim of this work is to evaluate the physiological response of Salicornia europaea grown under different conditions and its potential to extract sodium (Na) and copper (Cu) from different culture media. Different experiments were conducted with S. europaea cultivated in hydroponics and in substrate with and without biochar including different Cu (0, 5 and 10 mg L-1 CuCl2) and Na (7.5 and 15 g L-1 NaCl) concentrations. The growth in hydroponic media under different salinities reveals that this halophyte can extract up to 80% and 55% of the initial Na content when growing at 7.5 g L-1 and 15 g L-1 NaCl, respectively. In addition, S. europaea tolerates high Cu concentration, accumulating up to 1.61 mg g-1 DW in roots when exposed to 10 mg L-1 CuCl2 and 7.5 g L-1 NaCl. Plants grown in substrate show a different behavior, being even more tolerant to higher Cu concentrations. In addition, the presence of biochar in the substrate improves plant growth and provides a greater quantity of micronutrients. These results show the potential of S. europaea to be used in the phytoremediation process.
AB - Soil salinity is considered one of the major global challenges that agricultural production is currently facing. This condition, together with the increasing contamination with emerging pollutants, poses a serious risk for global food security. As efforts are made to develop nature-based solutions, bioremediation strategies have been implemented to harness different living organisms and mitigate environmental pollution. Halophytes grow in highly saline environment and can be the solution to valorize salt-degraded areas where other crops cannot grow. The aim of this work is to evaluate the physiological response of Salicornia europaea grown under different conditions and its potential to extract sodium (Na) and copper (Cu) from different culture media. Different experiments were conducted with S. europaea cultivated in hydroponics and in substrate with and without biochar including different Cu (0, 5 and 10 mg L-1 CuCl2) and Na (7.5 and 15 g L-1 NaCl) concentrations. The growth in hydroponic media under different salinities reveals that this halophyte can extract up to 80% and 55% of the initial Na content when growing at 7.5 g L-1 and 15 g L-1 NaCl, respectively. In addition, S. europaea tolerates high Cu concentration, accumulating up to 1.61 mg g-1 DW in roots when exposed to 10 mg L-1 CuCl2 and 7.5 g L-1 NaCl. Plants grown in substrate show a different behavior, being even more tolerant to higher Cu concentrations. In addition, the presence of biochar in the substrate improves plant growth and provides a greater quantity of micronutrients. These results show the potential of S. europaea to be used in the phytoremediation process.
KW - Copper toxicity
KW - Halophytes
KW - Heavy metals
KW - Nature-based solution
KW - Phytoremediation
KW - Salinity
UR - http://www.scopus.com/inward/record.url?scp=85198520502&partnerID=8YFLogxK
U2 - 10.1007/s42729-024-01937-0
DO - 10.1007/s42729-024-01937-0
M3 - Article
AN - SCOPUS:85198520502
VL - 24
SP - 5740
EP - 5758
JO - Journal of Soil Science and Plant Nutrition
JF - Journal of Soil Science and Plant Nutrition
SN - 0718-9508
IS - 3
ER -