Details
Original language | English |
---|---|
Pages (from-to) | 497-503 |
Number of pages | 7 |
Journal | International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives |
Volume | 41 |
Publication status | Published - 2016 |
Event | 23rd International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences Congress, ISPRS 2016 - Prague, Czech Republic Duration: 12 Jul 2016 → 19 Jul 2016 |
Abstract
For driver assistance and autonomous driving systems, it is essential to predict the behaviour of other traffic participants. Usually, standard filter approaches are used to this end, however, in many cases, these are not sufficient. For example, pedestrians are able to change their speed or direction instantly. Also, there may be not enough observation data to determine the state of an object reliably, e.g. in case of occlusions. In those cases, it is very useful if a prior model exists, which suggests certain outcomes. For example, it is useful to know that pedestrians are usually crossing the road at a certain location and at certain times. This information can then be stored in a map which then can be used as a prior in scene analysis, or in practical terms to reduce the speed of a vehicle in advance in order to minimize critical situations. In this paper, we present an approach to derive such a spatio-temporal map automatically from the observed behaviour of traffic participants in everyday traffic situations. In our experiments, we use one stationary camera to observe a complex junction, where cars, public transportation and pedestrians interact. We concentrate on the pedestrians trajectories to map traffic patterns. In the first step, we extract trajectory segments from the video data. These segments are then clustered in order to derive a spatial model of the scene, in terms of a spatially embedded graph. In the second step, we analyse the temporal patterns of pedestrian movement on this graph. We are able to derive traffic light sequences as well as the timetables of nearby public transportation. To evaluate our approach, we used a 4 hour video sequence. We show that we are able to derive traffic light sequences as well as time tables of nearby public transportation.
Keywords
- Dynamic prior map, Pedestrian behaviour prediction, Periodic event analysis, Traffic pattern, Walking path network
ASJC Scopus subject areas
- Computer Science(all)
- Information Systems
- Social Sciences(all)
- Geography, Planning and Development
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, Vol. 41, 2016, p. 497-503.
Research output: Contribution to journal › Conference article › Research › peer review
}
TY - JOUR
T1 - Analysis Of spatio-temporal traffic patterns based on pedestrian trajectories
AU - Busch, S.
AU - Schindler, T.
AU - Klinger, T.
AU - Brenner, C.
PY - 2016
Y1 - 2016
N2 - For driver assistance and autonomous driving systems, it is essential to predict the behaviour of other traffic participants. Usually, standard filter approaches are used to this end, however, in many cases, these are not sufficient. For example, pedestrians are able to change their speed or direction instantly. Also, there may be not enough observation data to determine the state of an object reliably, e.g. in case of occlusions. In those cases, it is very useful if a prior model exists, which suggests certain outcomes. For example, it is useful to know that pedestrians are usually crossing the road at a certain location and at certain times. This information can then be stored in a map which then can be used as a prior in scene analysis, or in practical terms to reduce the speed of a vehicle in advance in order to minimize critical situations. In this paper, we present an approach to derive such a spatio-temporal map automatically from the observed behaviour of traffic participants in everyday traffic situations. In our experiments, we use one stationary camera to observe a complex junction, where cars, public transportation and pedestrians interact. We concentrate on the pedestrians trajectories to map traffic patterns. In the first step, we extract trajectory segments from the video data. These segments are then clustered in order to derive a spatial model of the scene, in terms of a spatially embedded graph. In the second step, we analyse the temporal patterns of pedestrian movement on this graph. We are able to derive traffic light sequences as well as the timetables of nearby public transportation. To evaluate our approach, we used a 4 hour video sequence. We show that we are able to derive traffic light sequences as well as time tables of nearby public transportation.
AB - For driver assistance and autonomous driving systems, it is essential to predict the behaviour of other traffic participants. Usually, standard filter approaches are used to this end, however, in many cases, these are not sufficient. For example, pedestrians are able to change their speed or direction instantly. Also, there may be not enough observation data to determine the state of an object reliably, e.g. in case of occlusions. In those cases, it is very useful if a prior model exists, which suggests certain outcomes. For example, it is useful to know that pedestrians are usually crossing the road at a certain location and at certain times. This information can then be stored in a map which then can be used as a prior in scene analysis, or in practical terms to reduce the speed of a vehicle in advance in order to minimize critical situations. In this paper, we present an approach to derive such a spatio-temporal map automatically from the observed behaviour of traffic participants in everyday traffic situations. In our experiments, we use one stationary camera to observe a complex junction, where cars, public transportation and pedestrians interact. We concentrate on the pedestrians trajectories to map traffic patterns. In the first step, we extract trajectory segments from the video data. These segments are then clustered in order to derive a spatial model of the scene, in terms of a spatially embedded graph. In the second step, we analyse the temporal patterns of pedestrian movement on this graph. We are able to derive traffic light sequences as well as the timetables of nearby public transportation. To evaluate our approach, we used a 4 hour video sequence. We show that we are able to derive traffic light sequences as well as time tables of nearby public transportation.
KW - Dynamic prior map
KW - Pedestrian behaviour prediction
KW - Periodic event analysis
KW - Traffic pattern
KW - Walking path network
UR - http://www.scopus.com/inward/record.url?scp=84981288318&partnerID=8YFLogxK
U2 - 10.5194/isprsarchives-XLI-B2-497-2016
DO - 10.5194/isprsarchives-XLI-B2-497-2016
M3 - Conference article
AN - SCOPUS:84981288318
VL - 41
SP - 497
EP - 503
JO - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives
JF - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives
SN - 1682-1750
T2 - 23rd International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences Congress, ISPRS 2016
Y2 - 12 July 2016 through 19 July 2016
ER -