Details
Original language | English |
---|---|
Article number | 115013 |
Journal | Engineering structures |
Volume | 274 |
Early online date | 28 Oct 2022 |
Publication status | Published - 1 Jan 2023 |
Abstract
Computational efficiency and accuracy are two of the most important properties of integration methods. In this study, an explicit single-step integration method with third-order accuracy is proposed to improve computational efficiency and accuracy. The proposed method can achieve fourth-order accuracy in terms of displacement, velocity, and acceleration responses without physical damping. The algorithmic dissipation property is also improved to filter out high-frequency spurious responses on the premise of sufficient accuracy in the low-frequency response domain. Moreover, since the proposed method can advance the calculation step-by-step via the known displacement and velocity items, the time-consuming factorization of an effective stiffness matrix is not required in the calculation for the structure with a lumped mass matrix. In other words, high computational efficiency is ensured in the proposed method. The properties of the proposed method (i.e., the accuracy, convergence, dissipation, efficiency, and effectiveness of the nonlinearity) are demonstrated by using four representative examples. Specifically, a single-degree-of-freedom (SDOF) dynamic system with a theoretical solution is adopted to comparatively evaluate the accuracy and convergence of the proposed method, a typical nonlinear dynamic system is used to investigate the effectiveness of the nonlinear calculation; a linear Howe truss model is employed to explore the effectiveness and efficiency in the calculation of a multi-DOF structure, and a nonlinear wellbore modelis used to demonstrate the potential to solve the large-scale nonlinear system. Results show that the proposed method can obtain more accurate results in the nonlinear dynamic calculations; and its time consumption is around 65% of that of the Yuan method, 38% of that of the Kim method, and 30% of that of the Zhai method.
Keywords
- Explicit integration method, High efficiency and accuracy, Improved dissipation, Linear and nonlinear system, Prediction-correction
ASJC Scopus subject areas
- Engineering(all)
- Civil and Structural Engineering
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Engineering structures, Vol. 274, 115013, 01.01.2023.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - An explicit integration method with third-order accuracy for linear and nonlinear dynamic systems
AU - Liu, Wei
AU - Ye, Tianxi
AU - Yuan, Peng
AU - Beer, Michael
AU - Tong, Xiaolong
PY - 2023/1/1
Y1 - 2023/1/1
N2 - Computational efficiency and accuracy are two of the most important properties of integration methods. In this study, an explicit single-step integration method with third-order accuracy is proposed to improve computational efficiency and accuracy. The proposed method can achieve fourth-order accuracy in terms of displacement, velocity, and acceleration responses without physical damping. The algorithmic dissipation property is also improved to filter out high-frequency spurious responses on the premise of sufficient accuracy in the low-frequency response domain. Moreover, since the proposed method can advance the calculation step-by-step via the known displacement and velocity items, the time-consuming factorization of an effective stiffness matrix is not required in the calculation for the structure with a lumped mass matrix. In other words, high computational efficiency is ensured in the proposed method. The properties of the proposed method (i.e., the accuracy, convergence, dissipation, efficiency, and effectiveness of the nonlinearity) are demonstrated by using four representative examples. Specifically, a single-degree-of-freedom (SDOF) dynamic system with a theoretical solution is adopted to comparatively evaluate the accuracy and convergence of the proposed method, a typical nonlinear dynamic system is used to investigate the effectiveness of the nonlinear calculation; a linear Howe truss model is employed to explore the effectiveness and efficiency in the calculation of a multi-DOF structure, and a nonlinear wellbore modelis used to demonstrate the potential to solve the large-scale nonlinear system. Results show that the proposed method can obtain more accurate results in the nonlinear dynamic calculations; and its time consumption is around 65% of that of the Yuan method, 38% of that of the Kim method, and 30% of that of the Zhai method.
AB - Computational efficiency and accuracy are two of the most important properties of integration methods. In this study, an explicit single-step integration method with third-order accuracy is proposed to improve computational efficiency and accuracy. The proposed method can achieve fourth-order accuracy in terms of displacement, velocity, and acceleration responses without physical damping. The algorithmic dissipation property is also improved to filter out high-frequency spurious responses on the premise of sufficient accuracy in the low-frequency response domain. Moreover, since the proposed method can advance the calculation step-by-step via the known displacement and velocity items, the time-consuming factorization of an effective stiffness matrix is not required in the calculation for the structure with a lumped mass matrix. In other words, high computational efficiency is ensured in the proposed method. The properties of the proposed method (i.e., the accuracy, convergence, dissipation, efficiency, and effectiveness of the nonlinearity) are demonstrated by using four representative examples. Specifically, a single-degree-of-freedom (SDOF) dynamic system with a theoretical solution is adopted to comparatively evaluate the accuracy and convergence of the proposed method, a typical nonlinear dynamic system is used to investigate the effectiveness of the nonlinear calculation; a linear Howe truss model is employed to explore the effectiveness and efficiency in the calculation of a multi-DOF structure, and a nonlinear wellbore modelis used to demonstrate the potential to solve the large-scale nonlinear system. Results show that the proposed method can obtain more accurate results in the nonlinear dynamic calculations; and its time consumption is around 65% of that of the Yuan method, 38% of that of the Kim method, and 30% of that of the Zhai method.
KW - Explicit integration method
KW - High efficiency and accuracy
KW - Improved dissipation
KW - Linear and nonlinear system
KW - Prediction-correction
UR - http://www.scopus.com/inward/record.url?scp=85140709491&partnerID=8YFLogxK
U2 - 10.1016/j.engstruct.2022.115013
DO - 10.1016/j.engstruct.2022.115013
M3 - Article
AN - SCOPUS:85140709491
VL - 274
JO - Engineering structures
JF - Engineering structures
SN - 0141-0296
M1 - 115013
ER -