Details
Original language | English |
---|---|
Pages (from-to) | 31-40 |
Number of pages | 10 |
Journal | Journal of VLSI Signal Processing Systems for Signal, Image, and Video Technology |
Volume | 16 |
Issue number | 1 |
Publication status | Published - 1997 |
Abstract
Recent sub-μ semiconductor technology supports the monolithic integration of multiprocessor systems. High wiring density and short on-chip memory access cycles motivate novel architecture concepts, outperforming conventional parallel systems. An efficient controlling strategy is a key to gain high performance from limited silicon resources. In this paper, a controlling concept for a monolithic Autonomous Single-Instruction/Multiple Data (ASIMD) processor is presented, which combines the high parallelism of an SIMD approach with the flexibility of standard DSP architectures. To demonstrate the performance gains of the concept, a digital video signal processor, the HiPAR-DSP has been implemented. It consists of an array of 4 or 16 datapaths, local memories for each datapath, a shared memory with concurrent data access in shape of a matrix and a central RISC controller. A three stage execution autonomy has been implemented, consisting of conditional instructions, conditional skip of instructions by the data paths and global evaluation of local conditions by the central controller. This allows efficient execution of data dependent medium- and high-level algorithms with very low controlling overhead. A performance of up to two arithmetic gigaoperations per second is achieved for algorithms with irregular data flow or control flow for the 100 MHz clocked processor with 16 data paths.
ASJC Scopus subject areas
- Computer Science(all)
- Signal Processing
- Computer Science(all)
- Information Systems
- Engineering(all)
- Electrical and Electronic Engineering
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Journal of VLSI Signal Processing Systems for Signal, Image, and Video Technology, Vol. 16, No. 1, 1997, p. 31-40.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - An Algorithm Adapted Autonomous Controlling Concept for a Parallel Single-Chip Digital Signal Processor
AU - Kneip, Johannes
AU - Berekovic, Mladen
AU - Wittenburg, Jens Peter
AU - Hinrichs, Willm
AU - Pirsch, Peter
PY - 1997
Y1 - 1997
N2 - Recent sub-μ semiconductor technology supports the monolithic integration of multiprocessor systems. High wiring density and short on-chip memory access cycles motivate novel architecture concepts, outperforming conventional parallel systems. An efficient controlling strategy is a key to gain high performance from limited silicon resources. In this paper, a controlling concept for a monolithic Autonomous Single-Instruction/Multiple Data (ASIMD) processor is presented, which combines the high parallelism of an SIMD approach with the flexibility of standard DSP architectures. To demonstrate the performance gains of the concept, a digital video signal processor, the HiPAR-DSP has been implemented. It consists of an array of 4 or 16 datapaths, local memories for each datapath, a shared memory with concurrent data access in shape of a matrix and a central RISC controller. A three stage execution autonomy has been implemented, consisting of conditional instructions, conditional skip of instructions by the data paths and global evaluation of local conditions by the central controller. This allows efficient execution of data dependent medium- and high-level algorithms with very low controlling overhead. A performance of up to two arithmetic gigaoperations per second is achieved for algorithms with irregular data flow or control flow for the 100 MHz clocked processor with 16 data paths.
AB - Recent sub-μ semiconductor technology supports the monolithic integration of multiprocessor systems. High wiring density and short on-chip memory access cycles motivate novel architecture concepts, outperforming conventional parallel systems. An efficient controlling strategy is a key to gain high performance from limited silicon resources. In this paper, a controlling concept for a monolithic Autonomous Single-Instruction/Multiple Data (ASIMD) processor is presented, which combines the high parallelism of an SIMD approach with the flexibility of standard DSP architectures. To demonstrate the performance gains of the concept, a digital video signal processor, the HiPAR-DSP has been implemented. It consists of an array of 4 or 16 datapaths, local memories for each datapath, a shared memory with concurrent data access in shape of a matrix and a central RISC controller. A three stage execution autonomy has been implemented, consisting of conditional instructions, conditional skip of instructions by the data paths and global evaluation of local conditions by the central controller. This allows efficient execution of data dependent medium- and high-level algorithms with very low controlling overhead. A performance of up to two arithmetic gigaoperations per second is achieved for algorithms with irregular data flow or control flow for the 100 MHz clocked processor with 16 data paths.
UR - http://www.scopus.com/inward/record.url?scp=0031145723&partnerID=8YFLogxK
M3 - Article
AN - SCOPUS:0031145723
VL - 16
SP - 31
EP - 40
JO - Journal of VLSI Signal Processing Systems for Signal, Image, and Video Technology
JF - Journal of VLSI Signal Processing Systems for Signal, Image, and Video Technology
SN - 1387-5485
IS - 1
ER -